MEDYWAT WEBINAR

ADDRESSING ENVIRONMENTAL IMPACTS OF AN AGRICULTURE WATER SUPPLY SYSTEM WITH LIFE CYCLE ASSESSMENT (LCA)

Presented by Dr. Andi Mehmeti Email: <u>mehmeti@iamb.it</u>

EUROPEAN UNION

About the Project

 IR_2MA project was launched in April 2018 within the framework of the Cooperation Programme Interreg V/A Greece-Italy 2014-2020. The project lasts 24 months and involves 6 partners (regional authorities, research centres, universities and water management organizations) from regions of Epirus (Greece) and Apulia (Italy).

6 partners

IRRIGATION MANAGEMENT SCENARIOS

Performance evaluation of irrigation networks.

SMART DECISION SUPPORT TOOLS

On-farm optimization of water and nutrient use.

DEMONSTRATION SITES

Cloud-based technologies, Guidebooks.

https://www.interregir2ma.eu/

Tel: +302681050249 Fax: +302681050240

OUTLINE

Introduction

What is Life Cycle Assessment (LCA methodology)

Phases of a Life Cycle Assessment (LCA) study

Application of the LCA (case study)

DRIVERS FOR ENVIRONMENTAL IMPACT ASSESSMENT

•Agricultural production is one of the most pervasive drivers behind a number of global pressures on the environment resulting from a growing human population and changing patterns of food consumption.

Sustainability of irrigation is an important theme of water resource management in order to sustainably increase the global food supply (70% of water is diverted to agriculture) (FAO, 2017).

With elevated concerns related to environmental impacts, a life cycle assessment (LCA) framework can be used to determine areas of greatest impact and compare reduction strategies for agricultural production systems (CAFFREY AND WEAL 2013).

WHAT IS LCA? AND WHY IS IT SO IMPORTANT?

•Life cycle assessment (LCA) is a multi-step procedure for calculating the lifetime environmental impact of a product or service.

•Lifecycle – "Consecutive and interlinked stages of a product system, from raw material acquisition ...to final disposal".

•The <u>result of a LCA-study is an environmental profile</u> of a product or activity: a 'score list' with environmental effects.

ISO-compliant life cycle assessment <u>is the most reliable</u>
 <u>method</u> to verify environmental impacts, support claims and identify where we can most effectively take action.

LCA give a more holistic approach to environmental aspects of products.

Agriculture-related LCAs Keep Evolving

THE PHASES OF LIFE CYCLE ASSESSMENT (LCA)

The standardized LCA process has four major steps:

1. Goal and Scope Definition – What are we trying to learn?

Define and describe the product, process or activity. Establish the context in which the assessment is to be made and identify the boundaries and environmental effects to be reviewed for the assessment.

2. Life Cycle Inventory (LCI) – What's embedded in the product?

Identify and quantify energy, water and materials usage and environmental releases (e.g., air emissions, solid waste disposal, waste water discharges).

3. Life Cycle Impact Assessment (LCIA) – What effects does it have?

Assess the potential human and ecological effects of energy, water, and material usage and the environmental releases identified in the inventory analysis.

4. Data Interpretation – What does it all mean?

Evaluate the results of the inventory analysis and impact assessment to select the preferred product, process or service with a clear understanding of the uncertainty and the assumptions used to generate the results.¹

CASE STUDY — LCA OF IRRIGATION WATER SUPPLY SYSTEM

1. **GOAL AND SCOPE DEFINITION –** What are we trying to learn?

What are we trying to understand?	The goal is to generate a quantitative environmental profile of groundwater based irrigation water supply in Italy.
What are the	The function of the studied system is to provide groundwater for agricultural purposes.
System functions and functional unit (FU) ?	Quantified performance of a product system for use as a reference unit. The FU is 1000 m³ water supplied at farm gate.
Intended use and audience	The target group of this study are all stakeholders involved in the water supply and use, i.e. consortium and farmers and/or regional government.
Public, comparative	The results of this study are intended to be used in comparative assertions intended to be disclosed to the public.

CASE STUDY — SYSTEM BOUNDARIES

Boundaries for which processes in the products life cycle that is included in the LCA.

The system boundaries should at least include:

- The water supply train which is to be studied.
- Energy production required for the pumping.
- Production of materials/chemicals/additives required for the pumps and irrigation systems.

An assessment cannot cover everything so system boundaries clarify what it will include.

CASE STUDY — MODELLING PROCESSES AND INVENTORY ANALYSIS

Type of Processa	Name	Input Primary/secondary flow/dataset	How to calculate	Amount
Product flows		Irr	1000 m ³	
Foreground	1. Water Abstraction and Supply		Water, well, ground, IT	1000 m ³
Foreground	2. Irrigation Energy	Pumping, irrigation, 50 m total head, 100% electricity		250 kWh
	1. Electricity Production (electricity mix for Italy)	Electricity, medium voltage, IT	$Power_Elec_KWh = \frac{Frac_{electric} \times Volume \times 3.6 \times (9.81 \times D_{liquid} \times TDHm)}{(El_Motor_Eff * Pump_Eff))}$ $\frac{(El_Motor_Eff * Pump_Eff))}{3600}$	(TDH = 50 m, eff_motor 0,8, eff_pump 0,66)
Background	2. Pump production & manufacturing	Aluminium, wrought alloy - GLO Cast iron – GLO Polyvinylchloride, emulsion polymerised – GLO Synthetic rubber - GLO	Fraction per m ³ of water (p/m ³) = $\frac{Unit (Total mass of pump)}{Pump life (year) \times Hourof use \left(\frac{h}{year}\right) \times Flowrate \left(\frac{m^3}{h}\right)}$	1,5e-05
	2. Irrigation system & manufacturing	Steel, low-alloyed, hot rolled – GLO Copper - GLO	Fraction $\frac{Mass of irrigation system}{per m^3 of water} \frac{Mass of irrigation system}{Infrastrucuture life (year) \times Total Irrigation water (m^3/year)}$	Not considered

TOOLS : Paid licensing - SimaPro (PreSustainability), Gabi (Thinkstep) / Freeware - Open LCA (Green Delta), CCaLC (University of Manchester)

DATABASES: Paid licensing - Agri-footprint (NL), Gabi (DE), Ecoinvent (CH), SOCA / Freeware - Agribalyse, NEEDS, ELCD

CASE STUDY — MODELLING PROCESSES AND INVENTORY ANALYSIS

Functional unit: 10 kW ASHP 1 kWhth

Stage: Raw Materials

Total carbon footprint for stage:	0.087	kg CO2 eq. / f.u.
Total water usage for stage:	0.00	m ^s water / f.u.
Total water footprint (stress-weighted) for stage:	0.00	m^s w ater eq. / f.u.

Raw material	Amount (kg/f.u.)	CO2 eq. (kg/kg raw material)	CO2 eq. (kg/f.u.)	Water usage (m³/kg raw material)	Water usage (m³/f.u.)	Water footprint (stress-weighted) (m ³ eq./f.u.)	Database section	Production stage
aluminium, primary, at plant	6,29E-4	12,0	7,57E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
aluminium, secondary, from n	5,66E-3	0,420	2,38E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
cement, unspecified, at plant	0,045	0,761	0.034	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
copper, primary, at refinery, E	1,08E-3	1,85	2,00E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
copper, secondary, at refinery	7,50E-4	1,80	1,35E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
polyethylene, HDPE, granulat	2,50E-5	1,95	4,87E-5	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
polyethylene, LDPE, granulat	5,04E-3	2,10	0.011	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
polystyrene, high impact, HIP	3,30E-3	3,50	0.012	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
polyvinylchloride, at regional s	7,99E-5	2,01	1.60E-4	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
refrigerant R134a, at plant	5,00E-5	103	5,17E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
reinforcing steel, at plant	5,99E-3	1,48	8,88E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
sand, at mine	0,232	2,41E-3	5,58E-4	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
steel, low-alloyed, at plant	1,60E-3	1,76	2,81E-3	0.00	0.00	0.00	Ecoinvent/Ma	Assembly
Total:	0,301	Total:	0,087	Total:	0.00	0.00		
Energy	Amount (MJ/f.u.)	CO2 eq. (kg/MJ energy)	CO2 eq. (kg/f.u.)	Water usage (m³/MJ energy)	Water usage (m³/f.u.)	Water footprint (stress-weighted) (m³ eq./f.u.)	Database section	
Total:	0.00	Total:	0.00	Total:	0.00	0.00]	
Packaging	Amount (kg/f.u.)	CO2 eq. (kg/kg packaging)	CO2 eq. (kg/f.u.)	Water usage (m³/kg packaging)	Water usage (m³/f.u.)	Water footprint (stress-weighted) (m ³ eq./f.u.)	Database section	Production stage
-	0.00	T			0.00	0.00		
l otal:	0.00	lotal:	0.00	l otal:	0.00	0.00]	
Waste	Amount (kg/f.u.)	CO2 eq. (kg/kg waste)	CO2 eq. (kg/f.u.)	Water usage (m³/kg waste)	Water usage (m³/f.u.)	Water footprint (stress-weighted) (m³ eq./f.u.)	Database section	
Total	0.00	Total:	0.00	Total	0.00	0.00]
Tutal.	0.00	Total.	0.00	TULAI.	0.00	0.00	1	

n 😫 🔍 🗖 🕇	A Welcor	me 📩 MarocLate P MarocLate -	MA A Welcome P UF TRNI	TAPOLI 1 P Diesel	water supply, Trinit	tapoli 23					
s	0.1	te (Outeute: Discel water sweet	Trinitanali								
JA	P inpu	its/outputs: Diesei water suppl	у, пппароп								
rojects		ute.									
roduct systems	mpt	uG									0
A:Agriculture, forestry and fishing	0		Catanana	4	11-2	Carte (Barran	(In control of a	August and succession	Descrides	Data and its antes	Description
B:Mining and quarrying	FION	w	Category	Amount	Onit	Costs/Revenues	Uncertainty	Avoided waste	Provider D. Direct Indu	Data quality entry	Description
C:Manufacturing	he o	diesel, burned in building machine - GLO	431:Demolition and site preparatio	((A "B) /(C "D))/3600	E kWh		none		P Diesel, Italy		
D:Electricity, gas, steam and air conditioning supply	E al	Nates well is served IT	25 minutacture or general-purpo	1,00000	item(s)		none		P market for p		
E:Water supply; sewerage, waste management and remediation activit		water, wei, in ground, fi	Resource/unspecified	1.0000	LU ms		none				
F:Construction											
G:Wholesale and retail trade; repair of motor vehicles and motorcycles											
Petransportation and storage											
LiReal estate activities											
M:Professional, scientific and technical activities											
N:Administrative and support service activities											
S:Other service activities											
Diesel water supply, Trinitapoli											
Diesel, Italy											
Electricity water supply, Trinitapoli											
Naples Urban System											
Transferreduction partnenope											
UF TRNITAPOLI 1											
7W5											
dicators and parameters											
ackground data											
LTS											
	- Out	puts									0
		w	Category	Amount	Unit	Costs/Revenues	Uncertainty	Avoided product	Provider	Data quality entry	Description
	Flov						0000				
	Flow Egr	Diesel, Trinitapoli	Projector to control or control of	1.00000	ms ms		inoire .				
	Flow Feet	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	0.25000			none				
	Flow Feet	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000	m3		none				
	Flov Fer	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000	□ m3 □ m3		none				
	Flov Feet	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000	□ m3 □ m3		none				
	Flov Fe I	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.0000 0.25000	m3		none				
	Flov Fe I	Diesek, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000	□ m3 □ m3		none				
	Flov E ₂ I	Diesek, Trinitapoli Water, IT	Emission to water/unspecified	1.0000 0.25000	☐ m3 ☐ m3		none				
	Flov Er I	Diesek, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000			none				
	Flox Fe 1	Vieter, IT	Emission to water/unspecified	1.00000 0.25000			none				
	Flox Feel	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000	☐ m3		none				
	Flow	Diesel, Trinitapoli Water, IT	Emission to water/unspecified	1.00000 0.25000			none				
	Flow	Olesel, Tinitapoli Vate, IT	Emission to water/unspecified	1.00000 0.25000			none				
	Flox E ₂	Oleael, Tiontapoli Viate, IT	Emission to water/unspecified	1.00000 0.25000	m 3 m3		none				
	Flox E ₂	Oleand, Tiottapoli Vione, IT	Emission to water/unspecified	1.00000 0.25000	m3 m3		none				
	Flox	Oleael, finitapoli Varte, IT	Emission to water/unspecified	1.0000 0.2500	m3 m3		none				
	Flox	Deard, Finitapoli Vinte, IT	Emission to water/unspecified	1.0000 0.2500	m 3		noné				
	Flox	Oleael, finitapoli Varte, IT	Emission to water/unspecified	1.0000 0.2500	m 3		none				
	Flox	Oleand, Hontapoli Viane, IT	Emission to water/unspecified	1.00000 0.25000	m 3		none				
	Flox	Orenet, Franceski	Emission to water/unspecified	1.0000 0.2500	m3		none				
	Flox	forest in frances	Emission to water/unspecified	1.0000 0.25000			none				
,	Flox Fig I File 1 File 1	Nexes, IT	Emission to water/unspecified	1.00000 0.25000	al aspects Impact	t analysis	none				

CASE STUDY — IMPACT ASSESSMENT

The LCI data can then be used to perform an impact assessment using the LCIA methods

SELECTION	→ LIFE CYCLE INVENTORY	CLASSIFICATION & CHARACTERIZATION
Impact assessment method/s	Water 1000 m3	$CO_2 \rightarrow Global warming$ NH ₃ \rightarrow Acidification, Fine particulate matter formation
 AWARE (Water scarcity footprint); CML-1A baseline; Cumulative Energy Demand; 	Electricity 250 kWh	Characterization: Acidification $(x \ kg \ NH \ rologood) \left(\frac{1.96 \ kg \ SO_2 - eq}{2} \right) = 1.06x \ kg \ SO = og$
		• Addition: $(x \ kg \ NH_3 \ Teleasea) \left(\frac{kg \ NH_3}{kg \ NH_3}\right) = 1.96x \ kg \ SO_2 - eq$
 Cumulative Exergy Demand; Eco-indicator 99; 	Carbon dioxide (CO $_2$) = 200 kg	• Particulates: $(x \ kg \ NH_3 \ released) \left(\frac{0.024 \ kg \ PM_{2.5} - eq}{kg \ NH_3}\right) = 0.024x \ kg \ PM_{2.5} - eq$
 ReCiPe 2016; USEtox; TRACI; 	Ammonia (NH ₃) = 50 kg	CHARACTERIZATION Stratospheri Ozone Fine Terrestrial Fossil
	Methane (CH_4) = 10 kg	FACTORS (ReCiPe 2016)Global warmingc ozone depletionformation, particulate matteracidificatio scarcityresource scarcity
IMPACI 2002+	Phosphates (PO $_{4}^{3-}$) = 2 kg	CO ₂ 1
		CH4 36
	Hard Coal = 60 kg	N2O 298 0.011
	~	Ammonia (kg NH ₃) 0.240 1.960
		NOX 1.000 0.110 0.360

Repeat for each flow, sum results in each impact category

0.180

0.290

1.000

0,42

Hard Coal

SO2

CASE STUDY - LCA RESULTS

Impact category	Unit	Gria pov IT	d-electricity vered pumps,	Diesel-powered pumps, IT
Global warming	kg CO ₂ -eq		163.090	▼ 154.113
Stratospheric ozone depletion	kg CFC11-eq	\triangleright	8.98E-05	🔺 8.98E-05
Ionizing radiation	kBq Co-60-eq		26.61	▼ 3.15
Ozone formation, Human health	kg NOx-eq	\triangleright	0.28	2.14
Fine particulate matter formation	kg PM2.5-eq	\triangleright	0.19	a 0.78
Ozone formation, Terrestrial ecosystem	kg NOx-eq	\checkmark	0.28	4.82
Terrestrial acidification	kg SO ₂ -eq	\checkmark	0.56	1.41
Freshwater eutrophication	kg P-eq		0.025	▼ 0.006
Marine eutrophication	kg N-eq	4	0.30	▼ 0.01
Terrestrial ecotoxicity	kg 1,4-DCB-eq	4	141.88	▼ 140.46
Freshwater ecotoxicity	kg 1,4-DCB-eq	4	2.19	▼ 0.60
Marine ecotoxicity	kg 1,4-DCB-eq	4	2.93	▼ 0.95
Human carcinogenic toxicity	kg 1,4-DCB-eq	\triangleright	2.30	2.70
Human non-carcinogenic toxicity	kg 1,4-DCB-eq		35.67	▼ 17.04
Land use	m²a crop-eq		2.75	▼ 0.41
Mineral resource scarcity	kg Cu-eq	\diamond	0.25	a 0.40
Fossil resource scarcity	kg oil-eq	\checkmark	48.66	51.45
Water consumption	m ³ consumed	\frown	601.25	▼ 600.39

Calculations performed with OpenLCA 1.8.0

Human Health

Repeat Calculations (Sensitivity): . Depth of aquifer

- Efficiency of the pump;
- ii. Source of Energy (electric.vs diesel)

iv. Type of irrigation system (drip vs sprinkler)

CASE STUDY — LCA RESULTS OF COUNTRY BASED ANALYSIS

Impact category	Tomato
Global warming	2344.8
Stratospheric ozone depletion	0.016
Ionizing radiation	251.5
Ozone formation, Human health	6.9
Fine particulate matter formation	8.3
zone formation, Terrestrial ecosystem	10.8
Terrestrial acidification	49.3
Freshwater eutrophication	0.9

LCA ASSESSMENT BOUNDARIES – CROP PRODUCTION

WHO CARES ABOUT LIFE CYCLE ASSESSMENT?

It is increasingly being utilized within a large number of professions and for a wide variety of sustainability objectives such as:

- 1. Knowledge development (What are the most important environmental problems?)
- 2. Decision support (Where are the most effective areas for us to target resources to improve our performance?)
- 3. Information exchange/ communication (Communication of the effects of a company's environmental improvement efforts to authorities, neighbors, financial institutions and external stakeholders).

The preparation of an LCA requires time, skill and money. It also requires a methodology, a great deal of data, and software to manipulate the data.

Currently, for educational purposes LCAs are becoming easier to carry out with open source methodology and softwares.

Thank You for your Interest and Attention!

Any Questions?

