



Interreg V- A Greece-Italy Programme 2014 2020

www.greece-italy.eu

## IR<sub>2</sub>MA

Large Scale Irrigation Management Tools for Sustainable Water Management in Rural Areas and Protection of Receiving Aquatic Ecosystems

Subsidy Contract No: I1/2.3/27

Project co-funded by European Union, European Regional Development Funds (E.R.D.F.) and by National Funds of Greece and Italy

### Interreg V- A Greece-Italy Programme 2014 2020

www.greece-italy.eu





### IR2MA

Large Scale Irrigation Management Tools for Sustainable Water Management in Rural Areas and Protection of Receiving Aquatic Ecosystems

Subsidy Contract No: I1/2.3/27

### Partners



PB1/LB UNIVERSITY OF IOANNINA - Research Committee (UoI) http://www.rc.uoi.gr/

PB2 REGION of EPIRUS (ROE) http://www.php.gov.gr/

PB2 ISTITUTO SCIENZE DELLE PRODUZIONI ALIMENTARI (ISPA/CNR) http://www.ispacnr.it/

PB4 CIHEAM - ISTITUTO AGRONOMICO MEDITERRANEO – BARI (IAMB) http://www.iamb.it/

PB5 CONSORZIO PER LA BONIFICA DELLA CAPITANATA (CBC) http://consorzio.fg.it/

Associated partners

REGION OF PUGLIA (ROP) <a href="http://www.regione.puglia.it/">http://www.regione.puglia.it/</a>

Project co-funded by European Union, European Regional Development Funds (E.R.D.F.) and by National Funds of Greece and Italy

### Notes

| <br> |
|------|
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
| <br> |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |

## Deliverable 2.4.4 – Information and publicity

# Guidebook for the performance of large scale participatory irrigation systems under a nexus perspective

Involved partners:

PB4 CIHEAM - ISTITUTO AGRONOMICO MEDITERRANEO – BARI (IAMB)

Authoring team:

Andi MehmetiCIHEAM - ISTITUTO AGRONOMICO MEDITERRANEO – BARI (IAMB)Mladen TodorovicCIHEAM - ISTITUTO AGRONOMICO MEDITERRANEO – BARI (IAMB)

Place and time: Valenzano, Bari, Italy, 2021

### IR2MA

Project co-funded by European Union, European Regional Development Funds (E.R.D.F.) and by National Funds of Greece and Italy



© This open-access document is published under the Creative Commons Attribution Non-Commercial (<u>CC BY-</u><u>NC</u>) license and is freely accessible online to anyone.

### Disclaimer

The sole responsibility for the content of this deliverable lies with the authors. Neither the Interreg Greece-Italy Programme nor the European Commission is responsible for any use that may be made of the information contained therein.

| NOTES    |                                                                        | 3  |
|----------|------------------------------------------------------------------------|----|
| DISCLAIN | 1ER                                                                    | 5  |
| SUMMA    | RY                                                                     | 10 |
| 1.       | INTRODUCTION                                                           | 11 |
| 2.       | CROP PRODUCTION SYSTEM                                                 | 12 |
| 3.       | IRRIGATION                                                             | 13 |
| 3.1      | PERFORMANCE ASSESSMENT OF IRRIGATION SYSTEMS                           | 15 |
| 3.2      | ESTIMATING IRRIGATION WATER DEMAND AND SUPPLY                          | 16 |
| 3.2.1    | SOIL-WATER BALANCE AND IRRIGATION SCHEDULING                           | 16 |
| 3.2.2    | CROP EVAPOTRANSPIRATION (ETC) AND CROP WATER REQUIREMENT (CWR)         | 18 |
| 3.2.3    | IRRIGATION REQUIREMENT (IR)                                            | 20 |
| 3.2.4    | WATER DELIVERY PERFORMANCE INDICATORS                                  | 25 |
| 3.2.5    | IRRIGATION WATER QUALITY                                               | 26 |
| 4.       | ENERGY IN IRRIGATION AND CROP CULTIVATION                              | 30 |
| 5.       | ENVIRONMENTAL IMPACTS                                                  | 33 |
| 5.1      | BASICS OF LIFE CYCLE ASSESSMENT (LCA)                                  | 33 |
| 5.1.1    | GOAL AND SCOPE DEFINITION                                              | 33 |
| 5.1.2    | LIFE CYCLE INVENTORY (LCI)                                             | 35 |
| 5.1.3    | LIFE CYCLE IMPACT ASSESSMENT (LCIA)                                    | 35 |
| 5.1.4    | WATER FOOTPRINT (WF)                                                   | 37 |
| 5.1.4.1  | WATER SCARCITY FOOTPRINT (WSF) – THE AWARE METHOD                      | 40 |
| 5.1.5    | CARBON FOOTPRINT (CF)                                                  | 41 |
| 6.       | ECO-EFFICIENCY OF IRRIGATED CROPPING SYSTEMS                           | 44 |
| 7.       | A QUICK METHODOLOGY TO ESTIMATE THE ECO-EFFICIENCY OF CROP PRODUCTION. | 46 |
| 8.       | CONCLUSIONS                                                            | 47 |
| REFEREN  | CES                                                                    | 48 |
|          |                                                                        |    |

| Abbreviation | Explanation                         |
|--------------|-------------------------------------|
| ISO          | International Standard Organization |
| LCA          | Life Cycle Assessment               |
| LCI          | Life Cycle Inventory                |
| LCIA         | Life Cycle Impact Assessment        |
| LDPE         | Low Density Polyethylene            |
| HDPE         | High Density Polyethylene           |
| GIR          | Gross Irrigation Requirement        |
| NIR          | Net Irrigation Requirement          |
| CWR          | Crop Water Requirement              |
| WUE          | Water use efficiency                |
| WP           | Water productivity                  |
| IWUE         | Irrigation water use efficiency     |
| EEI          | Eco-efficiency index                |
| TVA          | Total value added                   |
| GWP          | Global warming potential            |
| CED          | Cumulative energy demand            |
|              |                                     |

### List of Figures

| Fig. 1. Typical system delimitation, farm practices and inputs for crop production agriculture                     | 12  |
|--------------------------------------------------------------------------------------------------------------------|-----|
| Fig. 2. Advantages and limitations of irrigation                                                                   | 13  |
| Fig. 3. Agricultural water supply chain                                                                            | 13  |
| Fig. 4. Examples of irrigation systems                                                                             | 14  |
| Fig. 5. Key performance categories and indicators for nexus-performance oriented irrigation systems                | 15  |
| Fig. 6. The components of soil-water balance and main management terms (TAW – Total Available Water,               | ,   |
| RAW – Readily Available Water)                                                                                     | 16  |
| Fig. 7. Illustration of soil saturation, field capacity, and permanent wilting point                               | 17  |
| Fig. 8. Different irrigation application options: (a) to a specified level below FC, (b) to FC level, and (c) to a |     |
| level above FC                                                                                                     | 18  |
| Fig. 9. Generalized crop coefficient curve for the main crop growing stages (adapted from FAO 56)                  | 19  |
| Fig. 10. Steps to compute gross irrigation water (GIR) requirements.                                               | 22  |
| Fig. 11. Type of water quality parameters.                                                                         | 26  |
| Fig. 12. Water productivity (WP) and Irrigation Water Productivity (IWP) of tomatoes grown under full              |     |
| irrigation and different water quality                                                                             | 29  |
| Fig. 13. Type of energy costs of agricultural operations.                                                          | 30  |
| Fig. 14. Energy conservation steps in irrigation.                                                                  | 31  |
| Fig. 15. The four steps of LCA methodology                                                                         | 33  |
| Fig. 16. Representation of the system boundaries for LCA of irrigation water supply                                | 34  |
| Fig. 17. Representation of the system boundaries for LCA of crop production                                        | 34  |
| Fig. 18. LCIA Steps for environmental impact in one single score                                                   | 36  |
| Fig. 19. Phases of LCA and WFA assessment                                                                          | 37  |
| Fig. 20. Share of green, blue, and grey water footprint indicators of tomato production using the Hoekstra         |     |
| 2011 approach                                                                                                      | 39  |
| Fig. 21. GWP and WSF analysis of tomato cultivation at subsystem and process levels                                | 44  |
| Fig. 22. Eco-efficiency assessment framework (ISO 14045:2012).                                                     | 44  |
| Fig. 23. The weighting of environmental impacts and costs, resulting in a two-dimensional diagram                  | 45  |
| Fig. 24. Eco-efficiency portfolio combining economic (TVA) and ecological data (carbon footprint) for toma         | ito |
| production under different crop input and management strategies                                                    | 46  |

### List of Tables

| Table 1. Comparing irrigation system characteristics                                                                   | 14 |
|------------------------------------------------------------------------------------------------------------------------|----|
| Table 2. Irrigation application efficiency and indicative bill of materials for different irrigation methods for 1     | 1  |
| ha                                                                                                                     | 14 |
| Table 3. Types of time and depth criteria used for generating irrigation schedules                                     | 18 |
| Table 4. Indicative values of ETo (mm/day) for climatic zones                                                          | 19 |
| Table 5. Crop coefficients (Kc) for initial, mid-season, and late-season stages and maximum crop height                | 20 |
| Table 6. Information to be gathered for data planning and management of irrigation water supply                        | 23 |
| Table 7. Tomato crop and management inputs.                                                                            | 24 |
| Table 8. Soil water characteristics.                                                                                   | 24 |
| Table 9. Computed ETc, P <sub>eff</sub> , NIR, and GIR for tomato                                                      | 24 |
| Table 10. Water quality parameters and level of concerns                                                               | 26 |
| Table 11. Salinity hazard of irrigation water.                                                                         | 27 |
| Table 12. Yield reduction in % at various ECw for some crops                                                           | 28 |
| Table 13. Results for tomato crop under different electrical conductivity (ECw) of irrigation water                    | 29 |
| Table 14. Indicative pump efficiencies for diesel and electric motors                                                  | 30 |
| Table 15. Energy-based performance indicators for irrigation water supply and crop production                          | 31 |
| Table 16. Energy demand for inputs used in crop production                                                             | 32 |
| Table 17. Input to be collected for LCA of irrigation and crop production                                              | 35 |
| Table 18. Main direct emissions from crop production                                                                   | 35 |
| Table 19. Calculation of the green and blue components of the process water footprint for tomato in                    |    |
| Capitanata, Southern Italy                                                                                             | 39 |
| Table 20. Water footprint indicators of tomato production using the Hoekstra 2011 approach                             | 39 |
| Table 21. Water scarcity footprint for inputs used in crop production.                                                 | 41 |
| Table 22. The carbon footprint for inputs used in crop production                                                      | 42 |
| Table 23. Low, average, and high emission factors used for estimating N <sub>2</sub> O emissions from N fertilizer and |    |
| lime using IPCC guidelines                                                                                             | 43 |
| Table 24. Input/output for tomato cultivation                                                                          | 43 |
| Table 25. GWP and WSF for 1 ha of tomato cultivation.                                                                  | 43 |
| Table 26. Crop market price and cost incurred per unit input in tomato cultivation.                                    | 46 |

### Summary



The global demand for water, energy, and food has been increasing steadily due to both population growth, economic development, and climate change. It is exerting pressure on irrigated agriculture systems involving complex trade-offs of water, energy, environment, and food, which may lead to a longrun worsening of sustainability. In this context, the performance evaluation of irrigation systems is being a widely studied subject to enhance resource efficiency and sustainability of agricultural production. During the last 20 years, several approaches, methodologies, and indicators have been developed for assessing irrigation performance from different perspectives. This guidebook presents a conceptual framework and specific basic indicators to support water managers, policymakers, researchers, and other professionals to evaluate the performance of irrigation systems using a nexus lens and ecoefficiency concept. This helps to better understand water-foodenergy–environment synergies and tradeoffs. All these issues are illustrated by the use of calculation examples.

Keywords: water, energy, environment, food, climate change, sustainability, life cycle assessment (LCA)

### 1. Introduction

The modernization of irrigation is one of the main contemporary issues of irrigated agriculture. Irrigated agriculture is, on average, at least twice as productive per unit of land as rain-fed agriculture. Accordingly, irrigation plays a fundamentally important role assure global food security, stabilize agricultural production, and increase farm income. In many developing countries, it is a major driver of economic development and social security. Irrigation is by far the main user of freshwater in the world with irrigated land varying greatly among countries mainly because of specific climatic conditions and type of cultivation (Vignani et al., 2016). Irrigated agriculture accounts for 40% of total crop production (nearly 60% of cereal production) and 70% of freshwater withdrawals (Alexandratos and Bruinsma, 2012). Under current trends and future climate change projections, it will play an increasingly important role in agriculture with a share of about 47% of food production by 2030. This may lead to a 14% increase in water withdrawals for agriculture with the strongest (in absolute terms) effects in the more water-scarce regions.

Nowadays, irrigated agriculture is under considerable pressure to produce more with lower supplies of water. For many years, modernization has been focused on water-saving technologies, i.e., converting from traditional surface irrigation to localized methods, better monitoring of soil-plant-atmosphere continuum, improved estimate of crop water requirements and irrigation scheduling, conservative agricultural practices, optimization of water use at farm/district level, and use of remote sensing and smart IT solutions. On one side, it refers to more efficient water use; on the other, it means much higher energy consumption which is linked to environmental burdens and increased production costs (Perret and Payen, 2020).

Water use and agricultural practices in the Mediterranean region are becoming increasingly complex, contentious, and unsustainable (Saladini et al., 2018). Many irrigated agricultural systems suffer from low performance and management failures. On other hand, rainfed agriculture is associated with larger amounts of fertilizer and machinery operations, which if unmanaged can lead to significant social, economic, and environmental costs (FAO, 2017). A tool that can help to enhance sustainability is the periodical audit and performance assessment of relevant irrigation and agriculture systems. Performance assessment of irrigation schemes has gained momentum as proposed by several studies (Bos, 1997; Gorantiwar and Smout, 2005; Malano et al., 2004; Molden and Gates, 1990). Water use efficiency and water productivity were often the indicators utilized in evaluation and benchmarking procedures. Most recently, the performance of irrigation has focused on the application of life cycle thinking (LCT) to evaluate potential trade-offs between water savings, energy consumption, environmental impacts, and economic costs/benefits. The LCT indicators capture the complex and often "hidden" linkages between resources from a nexus perspective.

## IRRIGATION FACTS



Irrigated agriculture represents 20% of cultivated land or 275 million hectares.



Irrigated agriculture produces two-time more yield than rainfed.



70 % of global freshwater withdrawals.

Global water withdrawal has increased three-times over 50 years (1960 – 2010).



Global agricultural water abstraction will increase by 14% in the period 2000-2030.



Globally, 56% of water withdrawn for irrigation is effectively used by crops.



The rise of energy consumption is becoming a major issue in the irrigation supply. The nexus is becoming an increasingly common framework for sustainability research and nexus terminology is increasingly popular in irrigated agriculture. Nexus thinking is relevant for integrated water resources management (Hamidov and Helming, 2020) and to use and manage resource systems taking into account different sustainability goals (Reinhard et al. 2017). The nexus is increasingly recognized as a conceptual framework able to support the efficient implementation of the Sustainable Development Goals (Terrapon-Pfaff et al., 2018).

With increasing attention to sustainability issues has come a rising interest in metrics for measuring the nexus performance of irrigation and other farming practices. However, one of the major challenges is a lack of synthesis of nexus knowledge, especially for local and small-scale irrigators and non-technical audiences<sup>1</sup>. This guidebook is intended for waterrelated professionals and agriculture practitioners to enable them to design and carry out a simplified nexus life cycle thinking-based performance assessment and to evaluate the multi-dimensional implications of irrigation practices. Past this introduction, section 2 presents a brief overview of the crop production system, irrigation methods, and components. Section 3 highlights the necessary performance of irrigation systems. Sections 4, 5, and

space and time based on the available technologies of crop production. The system encompasses crop field operations (e.g. soil preparation, tillage operations, or irrigation), inputs applied in the fields (i.e., seeds, water, fertilizers, pesticides, etc.), infrastructures (buildings, equipment, and machinery), and the agricultural production of plant goods. Furthermore, in a larger sense - not considered in this guidebook, the agricultural system can comprehend also product conservation, transformation, and consumption. Through these interactions, crop production has a wide range of direct and indirect effects on the environment. The crop yield is a measurement of the amount of agricultural production harvested per unit of land area. It is an indicator of agricultural intensity (per 1 ha of land used) productivity (per 1 ton of yield produced) and economic value (per 1 Euro earned). There are two main ways that farmers use agricultural water to cultivate crops: rain-fed farming and irrigation. Rain-fed farming is the natural application of water to the soil through direct rainfall. In irrigated agriculture, water taken up by crops is partly or provided through human intervention to avoid yield reduction and economic losses.

6 present the water, energy, environmental part, respectively. Finally, conclusions and practical implications are drawn in section 7.

### 2. Crop production system

An agricultural system is an assemblage of components that are united by some form of interaction and interdependence and operate within a prescribed boundary and time interval to achieve a specified agricultural objective on behalf of the beneficiaries of the system (Fig. 1). It encompasses all cropping sequences practiced over



<sup>&</sup>lt;sup>1</sup> Audience that has no real knowledge or distinct skills in irrigated agriculture.

### 3. Irrigation

Irrigation is one component of agricultural water management intended as the artificial application of water through an irrigation system to sustain plant growth and crop yield. It is the practice of applying water to crops when rainfall is not enough to, reliably, produce desired crop yields and quality. Besides meeting the crop water requirement, irrigation is also needed for field preparation, climate control (crop cooling and frost control), and leaching of excessive salts. The major advantages and disadvantages of irrigation as a practice are given in Fig. 2.

A typical agriculture water supply chain (Fig. 3) – delivering water to the crops – begins with a source, the mobilization (abstraction and conveyance), and treatment, storage, distribution, and final water delivery to farm gates for irrigation and production of goods and/or services. The sources of irrigation water



include conventional (surface water and groundwater) and non-conventional resources (saline/drainage water, treated wastewater). In humid climates, irrigation relies mainly on surface water while under subhumid and arid conditions underground water is the major water resource. About 7,700 m<sup>3</sup> of water per hectare is withdrawn on average annually for irrigation on a global level. However, irrigation efficiency—the amount of water required for irrigated crops over the volume withdrawn for irrigation—is around 56%. Treated wastewater use in agriculture represents only less than 0.5% of annual EU freshwater withdrawal – nevertheless, in some water-scarce countries, like Cyprus, reusing goes up to 90% of wastewater.



Fig. 3. Agricultural water supply chain.

To deliver the water to the irrigators, it is normally transported through conveyance infrastructures such as lined or unlined canals (gravity-fed conveyance) or pipelines (using a pumping system). From the main conveyance infrastructure, there are branch canals or delivery systems to either a group of irrigators or single irrigators. Water is not always suitable for irrigation and needs some level of water treatment before supply for the water supply system. There are various processes of treatment based on the source and quality of water in a specific region. In many irrigation schemes, the irrigation is managed by the local Water User Association (WUA) who is responsible for the operation and maintenance of the hydraulic structure and the operation of the pumps and water distribution. Once the water is delivered at the farm gate, the responsibility for distributing the water to the fields and on-farm application of the service to the user, who in return remunerates the WUA. When the water is applied to the field, there is excess water that is drained from the field, or farms back into the groundwater or watersheds. This water is not used consumptively for irrigation.

Crops can be irrigated with water distributed by gravity-powered and pressure-driven systems and conveyed in either open channel or pipe. Examples of gravity-powered systems include furrow irrigation systems, basin irrigation systems, and hand irrigation systems. Gravity flow systems convey and distribute water at the field level by a free surface, overland flow regime.

Surface irrigation can be divided into three categories: basin, furrow, and border, all of which function very similarly (Rai et al., 2017). When irrigation water is applied to flat soil and it is called basin irrigation. Otherwise, where its slope is under 5% and it is called furrow irrigation border irrigation. Surface and irrigation systems can be used indefinitely as long as the irrigation system is well-maintained, but difficulties arise to adapt them to the

| Attribute           | Drip               | Sprinkler     | Surface   |
|---------------------|--------------------|---------------|-----------|
| Pressure (bar)      | 0.3 - 4            | 2-6           | Low       |
| Filtration (mesh)   | 120-200            | 20-80         | None      |
| Water quality       | Free from sediment |               | No issue  |
| Efficiency (%)      | 75-90%             | 70-90%        | 40-70%    |
| Wetting pattern (m) | 0.15-1.2           | 1.5-30        | Broadcast |
| Irrigation rates    | Excellent          | Moderate      | Poor      |
| Application rates   | Small              | Medium        | High      |
| Frequency           | Daily              | Weekly        | Monthly   |
| Labor Cost          | Low                | Low           | High      |
| Initial cost        | High               | High          | Low       |
| Sophistication      | High               | Hight         | Low       |
| Fertigation         | Preferable         | Possible      | Not used  |
| Wastewater          | Possible           | Not permitted | Possible  |

#### Table 1. Comparing irrigation system characteristics.

specific needs of plants. The basins and furrows used for surface irrigation are made from natural materials – no infrastructure is assumed. However, land preparation using machines and/or human labor is needed to



Fig. 4. Examples of irrigation systems.

guarantee good irrigation efficiency. A pressure piped irrigation system is a network installation consisting of pumps, pipes, fittings, and other devices properly designed and installed to supply water under pressure from the source of the water to the irrigable area (Fig. 4). There are three commonly used methods: surface irrigation, sprinkler irrigation, and micro-irrigation (Table 1). The water delivery method and the kind of water emitters in the field are the main characteristics

of a piped irrigation system. There are many variations of pressurized irrigation systems such as sprinkler, drip, bubbler, trickle, mist or spray, and sub-surface irrigation. The crops cultivated with pressurized irrigation systems achieve high water use efficiency, optimum growth, and high yields (Table 2). However, they have high initial capital costs and require good maintenance. Irrigation systems can be manual or automatic and classed solid installations (laid or installed at fixed permanent or seasonal positions), semi-permanent (mains and sub mains are permanent while the laterals are portable, hand move, or mechanically), or portable installations, where all the parts are portable.

| Fable 2. Irrigation application | efficiency and indicative bill of | materials for different irrigation | methods for 1 ha. |
|---------------------------------|-----------------------------------|------------------------------------|-------------------|
|---------------------------------|-----------------------------------|------------------------------------|-------------------|

| Parameter               | Level<br>border/<br>Furrow | Drip   | Center<br>Pivot | Hose<br>move | Pipe<br>irrigation | Solid set<br>sprinkler | Travel<br>spray | Traveling<br>gun |
|-------------------------|----------------------------|--------|-----------------|--------------|--------------------|------------------------|-----------------|------------------|
| Efficiency (%)          | 60-80                      | 70-95  | 75-90           | 70-95        | 70-95              | 60-85                  | 70-90           | 55-75            |
| Pressure (bar)          | -                          | 0.7-2  | 0.7-2.5         | 1.5-3.7      | 1-2                | 3-4.5                  | 3-4.5           | 4-8              |
| Polyethylene (kg)       | -                          | 260.20 | 5.00            | 14.30        | 0.00               | 10.43                  | 13.60           | 0.11             |
| Polyvinyl chloride (kg) | -                          | 7.61   | 3.33            | 38           | 456.67             | 0.54                   | -               | 0.03             |
| Polypropylene (kg)      | -                          | 3.9    | 0               | 0.1          | 0.0076             | 0.03                   | -               | 0.0075           |
| Steel (kg)              | -                          | 0.025  | 50.008          | 9.804        | 0.002              | 0.010                  | 134.55          | 0.005            |
| Aluminum (kg)           | -                          | -      | -               | -            | -                  | 29.28                  | -               | 36.60            |
| Rubber (kg)             | -                          | -      | 23.1            | -            | -                  | -                      | -               | -                |

Note: The list of materials for irrigation systems is retrieved from AusLCI datasets [http://auslci.com.au/index.php/Datasets]

### 3.1 Performance assessment of irrigation systems

In recent years, the performance of irrigation systems has become a growing concern of researchers, water policymakers, and donor agencies.

al., 2004; Molden and Gates, 1990) have defined the sets of indicators that describe irrigation water performance. Performance indicators are broadly categorized into internal and external indicators. Internal indicators (water systemoriented) include classical irrigation efficiency,

Performance assessment of irrigation and drainage is the systematic observation, documentation, and interpretation of the management of an irrigation and drainage system, to ensure that the input of resources, operational schedules, intended outputs and required actions proceed as planned (Bos et al., 2005)

conveyance efficiency, storage efficiency, distribution efficiency, application and efficiency, while indicators external (system in the basin) include crop water productivity, food

Performance assessment of irrigation and drainage is a methodology for investigating, using a limited number of indicators, the level of service of installed systems (Vincent et al., 2007). The performance is the result of several processes occurring at different space and time scales. At small scales (plant, plot) biophysical processes are predominant. At intermediate scales (fields, farm) technical aspects are predominant. At larger scales socio-economic and political aspects are predominant.

The main methods used to evaluate irrigation system performance are direct measurements security, economic impact, social impact, environmental impact, etc. The number of

indicators needed for an assessment depends on boundary conditions and the purpose of the assessment (Bos et al. 2005). Since performance is assessed from different perspectives, different indicators should be combined in the assessment process considering the significance of the multifaceted relationships between water, environment, economic energy, costs/benefits, and food (Fig. 5).

for indicators, analysis hierarchy process, the Fuzzy set theory, and remote sensing (Elshaikh et al., 2018). For measuring performance indicators, operation data are collected and analyzed determine to the Ву performance. defining numeric indicators of performance, specific



targets for improvement can be set and subsequently monitored. Several studies (Bos, 1997; Gorantiwar and Smout, 2005; Malano et

Fig. 5. Key performance categories and indicators for nexus-performance oriented irrigation systems.

### 3.2 Estimating irrigation water demand and supply

In each irrigation area, there is a demand for water to achieve potential yields and a supply of water. The precise estimation of water demand at largescale irrigation perimeters is a key requirement for irrigation system design and water management. The water balance provides a tool at a crop, farm, or scheme level to analyze crop water needs and to optimize the operation of an irrigation system and its performance.

## 3.2.1 Soil-Water balance and irrigation scheduling

The water balance (accounting) method of irrigation scheduling is one method of estimating the required amount and timing of irrigation for a crop. Another method is monitoring soil water by using soil moisture sensors. The concept of a soilwater balance (SWB) can be defined as an estimation of the total amount of water that enters and leaves a volume of soil in a specific period. It is a dynamic parameter linked to the weather factors and root growth and it is used to predict the depletion of water in the effective root depth and, therefore, the amount of irrigation water to apply. The SWB method for irrigation scheduling requires knowledge about weather, soil, crop, and on-field irrigation system data. The components of the SWB are depicted in Fig. 6.



Fig. 6. The components of soil-water balance and main management terms (TAW – Total Available Water, RAW – Readily Available Water).

SWB is estimated daily, and it is expressed for a day *I* in terms of water depletion in the effective root zone  $D_{r,i}$  (mm) through equation 1:

$$D_{r,i} = D_{r,i-1} - P_i - IR_i + ET_{c,i} + RO_i + DP_i$$
 (1)

Major inputs include precipitation (P) or rainfall and irrigation (IR). Outputs include crop evapotranspiration (ET<sub>c</sub>), surface runoff (R), and deep percolation (DP). Crop evapotranspiration refers to soil evaporation and crop transpiration and it is the biggest subtraction from the water balance equation. RO occurs when precipitation and irrigation inputs are greater than the soil infiltration rate and refers to the water amount that does not enter the soil and runs off the irrigated land. From the hydrological (engineering) point of view, the runoff from a drainage basin can be considered as a product (gain) in a hydrological cycle. From the agronomic point of view, the runoff can be considered as precipitation losses in a rainfall-runoff analysis. Some components may not be relevant and be removed to simplify evaluation (e.g., no irrigation in rain-fed farming, no run-on (incoming overland flows), or no capillary rise from deep water table). RO can be neglected in arid and semiarid regions and the case of application of localized irrigation techniques (e.g. drip irrigation). Capillary rise (CR) is usually a very small component that should be taken into consideration only in the case of shallow groundwater level (i.e.when it is up to 2-3 m below the crop rooting system and for medium- and fine-textured soils).

Soil is the plant's water reservoir (Fig. 7). This reservoir has upper and lower limits of water that can be used by crops. This amount of water depends on soil texture and root depth and represents the difference between the field capacity (FC) and the permanent wilting point (PWP). The FC is defined as the water content at which drainage becomes negligible on free-draining soil. The minimum SWC is defined when plants permanently wilt and are called the PWP.



Fig. 7. Illustration of soil saturation, field capacity, and permanent wilting point.

The soil water stored between FC and the PWP is called the soil water holding capacity (SWHC) and it is expressed in mm of water per 1 m of soil depth. total available water or available water capacity (AWC). The SWHC should be multiplied by the root depth (Rd) of a specific crop to determine the Total Available Water (TAW).

$$TAW = \left(\frac{FC - PWP}{100} \times R_d\right)$$
(2)

Where: TAW is the total available soil water in the root zone [mm], FC is the volumetric water content at field capacity [m<sup>3</sup> m<sup>-3</sup> in %], PWP is the volumetric water content at wilting point [m<sup>3</sup> m<sup>-3</sup> in %], R<sub>d</sub> is the rooting depth [mm].

Proper irrigation scheduling should never allow a complete depletion of plant-available water. The greater the depletion, the greater the water stress until the PWP threshold is reached and a plant's vital processes cease. Readily available water (RAW) represents the amount of water that can be depleted from the root zone without compromising crop growth (Eq. 3). RAW is estimated as a fraction (p) of TAW.

$$RAW = p \times TAW \tag{3}$$

Where RAW is the readily available soil water in the root zone [mm]; p average fraction of TAW that can be depleted from the root zone before crop water stress (reduction in ET) occurs [0-1]. This fraction (p) represents a threshold for maximum crop production (the optimum yield threshold, OYT). The factor p differs from one crop to another and varies

from 0.3 to 0.7. A value of 0.50 for p is commonly used for many crops. When depletion > RAW soil water in the root zone drops below OYT. Root's capacity to extract water from the soil is reduced and stomata are going to close, thus, ET<sub>c</sub> will be reduced. Management allowable depletion (MAD) specifies the maximum amount of soil water the irrigation manager chooses to allow the crop to extract from the active rooting zone between irrigations. The soil's MAD is less than its total AWC. Values of RAW (as a percentage of TAW) are typical: i) 25-40% for shallow or sparsely rooted crops; ii) 50% for deep-rooted crops; iii) 60-65% for deeprooted crops with the dense rooting system; iv) may be decreased by 5-10% when ETo>6 mm/day,

Different soil types have different SWHC - AWC. For example, coarse soils, such as sands and sandy loam, have relatively large pores when compared to finer textured soil such as clay. Sandy soils drain rapidly and do not hold water well. Fine soils, like clays or clay loams, have small mineral particles and very small pores holding water well.

When the soil water depletion in the root zone  $(D_r)$  is greater than RAW, a dimensionless coefficient K<sub>s</sub> (0–1) is used to account for the level of water stress (Eq. 4):

$$K_{s} = \frac{TAW - D_{r}}{TAW - RAW}$$
(4)

Where  $D_r$  is the root zone's soil water depletion, TAW is the total available water, and RAW is readily available water. For soil water limiting conditions, K<sub>s</sub> < 1. Where  $D_r$  is lower or equal to RAW there is no water stress, K<sub>s</sub> = 1.

To generate an irrigation schedule for evaluating or planning a particular irrigation strategy, time, and depth criteria have to be established (Table 3). Since crop water requirements vary over the growing season, farmers will need to adjust irrigation during the season based on the crop, its root depth and growing stage, availability and quality of water, soil infiltration rate, characteristics of the irrigation system, etc.

Table 3. Types of time and depth criteria used forgenerating irrigation schedules.

| Time criterion  |                                      |
|-----------------|--------------------------------------|
| Fixed interval  | The time interval between            |
| (days)          | irrigations is fixed (e.g., 7 days). |
| Allowable       | Amount of water that depletes        |
| depletion       | from the root zone before the        |
| (mm water)      | irrigation is needed (e.g., 30 mm).  |
| Allowable       | Percentage of RAW that depletes      |
| depletion       | before the irrigation is needed      |
| (% of RAW)      | (e.g., 100%).                        |
| Depth criterion |                                      |
| Back to FC      | Irrigate to bring the SWC back to    |
| (± mm water)    | FC plus/minus some value.            |
| Fixed           | Irrigate with a fixed amount of      |
| application     | water (e.g., 20 mm).                 |
| depth           |                                      |
| (mm water)      |                                      |
| Water layer     | The threshold for the depth of the   |
| between         | surface water layer that should be   |
| bunds           | maintained between the soil bunds    |
| (mm water)      | (e.g., 5 mm) for the generation of   |
|                 | irrigation events for flooded rice.  |

Three possible irrigation options are illustrated in Fig. 8: (i) return soil moisture to a specified level below FC, (ii) irrigate until FC level is reached, and (iii) irrigate to a specified level above FC. Applying water to a level below FC is suitable when weather forecasting indicates precipitation in the days succeeding the irrigation event and, therefore, irrigation water can be saved.



Fig. 8. Different irrigation application options: (a) to a specified level below FC, (b) to FC level, and (c) to a level above FC.

The irrigation above FC is suitable when low-quality water is applied and is necessary to leach salts out of the root zone. This irrigation option presupposes the presence of an adequate drainage system and should be applied possibly out of the crop-growing season to avoid the leaching of nutrients together with salts. The determination of irrigation amounts described here refers to Net Irrigation Requirements (NIR), which, for practical purposes, should be divided by the efficiency of the irrigation application method. In such a way, NIR is converted to Gross Irrigation Requirements (GIR) which represents the effective amount of water that should be applied in a field to guarantee that NIR is supplied to a specific crop. It is important to know that using too much irrigation water can reduce crop yield and quality, increase salinity levels, and leaching out of fertilizer from the field.

## **3.2.2** Crop evapotranspiration (ETc) and crop water requirement (CWR)

Accurate CWR assessment is a key component to optimize water use efficiency and develop efficient irrigation scheduling practices. CWR refers to the amount of water required to compensate for evapotranspiration losses from a cropped field during a specified period. The concept is intimately connected with crop evapotranspiration (ETc). The values of ETc and CWR are identical, so, the ETc is the CWR for a given crop/cropping pattern during a certain period. Nevertheless, there is some difference because ETc represents the water losses that occur (i.e., a hydrological term), whereas CWR indicates the amount of water that should be supplied to account for these losses (i.e., an irrigation management term). Therefore, the estimation of ETc precedes the estimation of CWRs where the latter usually represents the values of ETc aggregated over some time. Appropriate estimation of CWR facilitates:

- (i) A day-to-day irrigation scheduling,
- (ii) Determination of seasonal water needs of an existing irrigation scheme (i.e., seasonal irrigation planning), and
- (iii) Estimation of water volumes to be supplied to newly irrigated areas (i.e., during the irrigation project design and definition of irrigation network hydraulic characteristics).

Crop evapotranspiration (ETc) is influenced by several weather parameters, crop characteristics, management, and environmental aspects. Commonly, ETc is calculated by multiplying the reference crop evapotranspiration (ETo) by the crop coefficient (Kc) as given in Eq. 5:

$$ET_{c} = K_{c} \times ET_{o}$$
(5)

Where:  $ET_c$  = Crop evapotranspiration (mm/day);  $ET_o$  = Reference crop evapotranspiration (mm/day)  $K_c$  = a specific crop coefficient that changes during the growing season.

Reference evapotranspiration is defined by the FAO 56 (Allen et al., 1998) as "the rate of evapotranspiration from a hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 sec m-1 and an albedo of 0.23, closely resembling the evapotranspiration from an extensive surface of green, well-watered grass of uniform height, actively growing and completely shading the ground.

The FAO 56 irrigation and drainage document (Allen et al. 1998) proposed a standard physically-sound method for the estimation reference evapotranspiration (ETo) based on the Penman-Monteith equation.

$$ET_{o} = \frac{0.408 \cdot \Delta \cdot (R_{n} - G) \cdot \frac{900}{T + 273} \cdot u_{2} \cdot (e_{s} - e_{a})}{\Delta + \gamma \cdot (1 + 0.34 \cdot u_{2})}$$
(6)

ETo = Reference evapotranspiration (mm/day); Rn = Net radiation at the crop surface (MJ/m<sup>2</sup> per day); G = Soil heat flux density (MJ/m<sup>2</sup> per day); T = Mean daily air temperature at 2 m height (°C); u2 = Wind speed at 2 m height (m/sec); es = Saturation vapour pressure (kPa); ea = Actual vapour pressure (kPa); es - ea = Saturation vapour pressure deficit (kPa).

The influence of the climate on crop water needs is given by the reference crop evapotranspiration (ETo). The only factors affecting ETo are climatic parameters, therefore ETo can be computed from meteorological data. If only a rough estimate of the ETo value is required Table 4 can be used. Crop coefficient (Kc) varies predominately with specific crop characteristics integrating the effect of characteristics that distinguish a typical field crop from the grass reference.

 Table 4. Indicative values of ETo (mm/day) for climatic zones.

| Climatic zone | Mean daily temperature |         |       |  |  |
|---------------|------------------------|---------|-------|--|--|
|               | <15°C                  | 15-25°C | >25°C |  |  |
| Desert/arid   | 4-6                    | 7-8     | 9-10  |  |  |
| Semi-arid     | 4-5                    | 6-7     | 8-9   |  |  |
| Sub-humid     | 3-4                    | 5-6     | 7-8   |  |  |
| Humid         | 1-2                    | 3-4     | 5-6   |  |  |

Kc is the ratio of the crop ETc to the reference ETo and it represents the integration of four primary characteristics that distinguish the crop from reference grass: crop height (influences r<sub>a</sub>); albedo (reflectance) of the crop soil surface (influences Rn); canopy resistance (affected by LAI, leaf age, and conditions, etc.) and evaporation from soil (especially from exposed soil).

A generalized crop coefficient curve is presented in Fig. 9.



Fig. 9. Generalized crop coefficient curve for the main crop growing stages (adapted from FAO 56).

Table 5 indicates per crop the Kc values for different stages (initial, mid, and end). Crop coefficients are dimensionless numbers usually ranging from 0.3 to 1.2.

| Table 5. Crop coefficients (Kc) for initial, mid-season, |
|----------------------------------------------------------|
| and late-season stages and maximum crop height.          |

| Сгор         | K <sub>c,ini</sub> | K <sub>c mid</sub> | $\mathbf{K}_{cend}$ | Max crop<br>height<br>(m) |
|--------------|--------------------|--------------------|---------------------|---------------------------|
| Artichoke    | 0.5                | 1                  | 0.95                | 0.7                       |
| Asparagus    | 0.5                | 0.95               | 0.3                 | 0.2-0.8                   |
| Barley       | 0.3                | 1.15               | 0.25                | 1                         |
| Broccoli     | 0.7                | 1.05               | 0.95                | 0.3                       |
| Carrot       | 0.7                | 1                  | 0.95                | 0.3                       |
| Lettuce      | 0.7                | 1                  | 0.95                | 0.3                       |
| Maize, field | 0.3                | 1.2                | 0.35                | 2                         |
| Maize, sweet | 0.3                | 1.15               | 1.05                | 1.5                       |
| Olives       | 0.65               | 0.7                | 0.7                 | 6-9                       |
| Potato       | 0.5                | 1.15               | 0.75                | 0.6                       |
| Spring Wheat | 0.3                | 1.15               | 0.4                 | 1                         |
| Strawberries | 0.4                | 0.85               | 0.75                | 0.2                       |
| Sugar beet   | 0.35               | 1.2                | 0.7                 | 0.5                       |
| Tablegrape   | 0.3                | 0.85               | 0.45                | 2                         |
| Tomato       | 0.6                | 1.05               | 0.9                 | 0.6                       |
| Watermelon   | 0.4                | 1                  | 0.75                | 0.4                       |
| Winegrape    | 0.3                | 0.7                | 0.45                | 1.5-2                     |
| Winter Wheat | 0.7                | 1.15               | 0.4                 | 1                         |
| Zucchini     | 0.95               | 0.75               | 0.3                 | 0.95                      |

In the case of water stress crop ET is reduced due to stomatal closure. Hence, crop ET is adjusted for water stress and estimated by multiplying the crop coefficient by the water stress coefficient K<sub>s</sub> defined previously by equation 4. Accordingly,  $ET_{c,adj}$  is determined as:

$$ET_{c,adj} = K_s \times K_c \times ET_o$$
 (7)

The reduction of ETc causes the decline of crop growth, i.e. biomass and yield. The simplest equation to estimate yield reduction due to water stress is proposed is given in Eq. 8:

$$\left(1 - \frac{Y_a}{Y_m}\right) = K_y \times \left(1 - \frac{ET_{c,adj}}{ET_c}\right)$$
 (8)

Where  $Y_a$  is the actual yield under water stress corresponding to adjusted ET ( $ET_{c,adj}=K_s*K_c*ET_o$ ),  $Y_m$ is the maximum yield corresponding to the optimal water supply, and  $K_y$  is a crop-specific yield response factor that can vary during the growing season. Indicatively, Ky goes from 0.80 to 0.85, for the most water stress-tolerant crops, to 1.25–1.30 for the most sensible water stress crops.

### 3.2.3 Irrigation requirement (IR)

The irrigation requirement (IR) is one of the principal parameters for the planning, design, and operation of irrigation and water resources systems. IR is different from CWR. Irrigation requirement refers to the amount of irrigation that should be supplied to a crop whereas crop water requirement refers to the water used by crops for growth.

Irrigation requirements are crop specific and depend on the weather data (past, actual, and forecasted), soil, crop, irrigation system (method) characteristics, and depth of water table. Total irrigation requirements include net irrigation requirement (NIR) plus any losses in distributing and applying and operating the system.

The NIR is the depth of water needed to fulfill the CWR over any effective precipitation for a diseasefree crop growing in large fields under nonrestricting soil and soil water conditions and under adequate fertility (Allen et al. 2011). It is the amount of water that is not effectively provided by rainfall. The NIR is calculated by subtracting the effective rainfall from the crop water need (Eq. 9).

$$NIR = ET_c - P_{eff}$$
(9)

In the cases where all water needed for optimal growth of a crop is provided by rainfall, irrigation is not required and NIR equals 0. In the cases where rainfall is zero during the growing season, all water has to be supplied by irrigation. Consequently, the irrigation water need (NIR) equals the crop water need ( $ET_{crop}$ ). In most cases, however, part of the crop water need is supplied by rainfall and the remaining part by irrigation. In such cases, the NIR is the difference between the crop water need ( $ET_{crop}$ ) and that part of the rainfall which is effectively used by the plants ( $P_{eff}$ ).

Effective precipitation ( $P_{eff}$ ) represents the amount of water effectively used by a crop (i.e. stored in the root zone) after a precipitation event. In other words, is that part of the total precipitation that

replaces, or potentially reduces, a corresponding net quantity of required irrigation water. Factors that influence P<sub>eff</sub> are precipitation type (rainfall or snow), precipitation quantity and intensity, soil texture, structure and depth, precedent soil moisture content, landscape, slope and cover, vegetation height, density, growing stage, and root depth. Besides, geographical location and other factors will also affect the calculation of effective rainfall.

Some empirically determined equations can be used for estimating  $P_{eff}$ . They have been developed under a given set of conditions that may be very different from those under which they have to be applied. The parameter  $P_{eff}$  can be calculated for each month from the FAO approach as:

(ii) If P <

$$P_{eff} = 0.8 \times P_{total} - 25$$
 (10)  
75 mm/month

$$P_{eff} = 0.6 \times P_{total} - 10 \qquad (11)$$

Another commonly used method is the USDA Soil Conservation Service Method. The USDA SCS equations to estimate effective rainfall is:

(i) For 
$$P_{total} \le 250 \text{ mm}$$
  
 $P_{eff} = P_{total} / 125 \times (125 - 0.2 \times P_{total})$  (12)

(ii) For  $P_{total} \ge 250 \text{ mm}$ 

 $P_{eff} = (125 + 0.1 \times P_{total})$  (13)

Where  $P_{eff}$  is the effective rainfall and  $P_{total}$  the total rainfall in the concerned period.

FAO approach is more suitable for the crops with shallow rooting systems and coarse soil texture, whereas the USDA SCS formulas are more suited for the deep-rooted and perennial crops and fine soil texture. As an alternative solution, it could be determined as a fixed percentage (usually 70% or 80%) of total precipitation. This option produces values of  $P_{eff}$  in between those proposed by the previous two approaches.

Net irrigation water requirements for specific plants

are modeled as the amount of water that plants need according to atmospheric demand, taking into account the relative soil moisture and the water holding capacity of the irrigated layer. Estimates of irrigation requirements can be made from 1) historical observations or 2) numerical models.

Irrigation water withdrawal normally far exceeds the NIR or the consumptive use because of water loss in its distribution from its source to the crops. The total amount of water, inclusive of losses, applied through irrigation is termed as gross irrigation requirements (GIR) which account for the scheme irrigation efficiency a product of field application efficiency, and the conveyance efficiency of the distribution system (Eq. 14). The GIR is the amount that must be pumped/released from the source.

$$GIR = \frac{NIR}{E_c \times E_d \times E_a}$$
(14)

Where: GIR = Gross irrigation requirements (mm); NIR = Net irrigation requirements (mm),  $E_c$  = conveyance efficiency (%),  $E_d$  = distribution efficiency (%),  $E_a$  = field application efficiency (%). GIR estimated in mm should be converted in m<sup>3</sup> ha<sup>-1</sup> knowing that 1 mm of water corresponds to 10 m<sup>3</sup> ha<sup>-1</sup>. Then, it should be multiplied by irrigated area (in ha) to determine the volume of water to be withdrawn for irrigation.

Water withdrawal indicates the aggregate sum of water withdrawn from rivers, lakes, and aquifers either permanently or temporarily and conveyed to a place of use. The conveyance and distribution efficiency mainly depends on the length and type of infrastructures used (lined/unlined canals, high/low-pressure conduits), the complexity of the interconnections (diversions, retention reservoirs, etc.), and the capacity of the management staff. Moreover, the losses of water stored in the accumulation lakes/reservoirs should be taken into considerations. The GIR can be determined for a field, for a farm, for an outlet command area, or an irrigation project, depending on the need, by

considering the appropriate losses at various stages of growth of the crop. Typical ranges of irrigation application efficiency (Ea) for different irrigation methods are given in Table 1. A flow chart showing the calculation of irrigation water requirements is given in Fig. 10. Table 6 summarizes the information that WUA and single irrigators can compile for the planning and management of irrigation and assessment of performance.



### Table 6. Information to be gathered for data planning and management of irrigation water supply.

| Category                                                     | Input                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water<br>withdrawal and<br>delivery (wells,<br>rivers, etc.) |                              | Type of water source<br>(surface/groundwater)<br>Volume and quality of water available<br>for irrigation during a season<br>Conveyance Diversions, Distribution<br>Diversion, Conveyance efficiency,<br>Distribution efficiency, Storage<br>efficiency.<br>In the case of single irrigators who are<br>not in an irrigation scheme or abstract<br>water from the wells, the volume of<br>water delivered to the field                                                                                                                                                      | <ol> <li>The volume of water at<br/>conveyance distribution and<br/>within a scheme</li> <li>Water losses through<br/>conveyance and distribution.</li> <li>The volume of water<br/>delivered/available to specific<br/>areas (farms/fields/crops) within<br/>an irrigation scheme.</li> </ol>                                                                                                                                                                                            |
| Water demand<br>Water demand                                 | Climate<br>                  | e characteristics<br>Precipitation (mm/period)<br>Minimum and maximum air<br>temperatures (°C)<br>Minimum and maximum (or average)<br>humidity (%)<br>Solar radiation or sunshine hours<br>Average wind speed (m/s)<br>Latitude and elevation of location<br>Cropping Pattern<br>Start of the growing season<br>Duration of growing stages (initial,<br>development, mid-season, and end)<br>Crop coefficient (Kc)<br>Rooting depth (m)<br>Critical depletion (fraction)<br>Yield response (Ky)<br>Crop height (m)*<br>Expected yield under optimal water<br>supply (t/ba) | <ol> <li>Reference evapotranspiration<br/>(mm/period);</li> <li>Crop evapotranspiration<br/>(mm/period)</li> <li>Effective rainfall (mm/period);</li> <li>Net irrigation requirements (NIR)<br/>(mm/period);</li> <li>Gross irrigation requirements<br/>(GIR) (mm/period)</li> <li>Specific continuous discharge<br/>(I/s/ha)</li> <li>Total available water – TAW<br/>(mm);</li> <li>Readily available water – RAW<br/>(mm);</li> <li>Daily soil moisture depletion<br/>(mm):</li> </ol> |
| Water demand                                                 | Soil cha<br>_<br>_<br>_<br>_ | supply (t/fla)<br>racteristics<br>Soil texture<br>Soil Water Holding Capacity (SWHC) -<br>(mm/m)*<br>Infiltration rate (mm/day)<br>Initial soil moisture depletion (as % of<br>TAW)*                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>13. Irrigation time (date) or interval (days)</li> <li>14. Irrigation amount (mm) applied or volume (m<sup>3</sup>);</li> <li>15. Lost irrigation water (mm or m3); -</li> <li>16. Actual crop evapotranspiration –</li> </ul>                                                                                                                                                                                                                                                   |
| Water application<br>at a field<br>(irrigation<br>system))   |                              | Irrigated land (ha)<br>Irrigation method (sprinkler, drip,<br>surface)<br>Application efficiency<br>System application rate<br>Wetted area                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17. Yield reduction due to water<br>stress (%)<br>18. Crop Yield (t/ha)                                                                                                                                                                                                                                                                                                                                                                                                                   |

### Example 1: Predicting water demand using simulation tools

This example uses the main steps depicted in Fig. 10 and shows the estimation of SWB components of tomato crop cultivated in Trinitapoli (N 41° 19' 16.22'''; E 16° 07' 45.25''; elevation: 16 m a.s.l.), South Italy (Puglia region). Excel-IRR model (Todorovic, 2006) was applied for the calculation of ETo, ETc, NIR, and GIR using local weather variables (not shown here), main crop growth data (Table 7), and soil characteristics (Table 8). The crop evapotranspiration in the Excel-IRR model is estimated from reference evapotranspiration (ETo) and the single crop coefficient approach (Eq. 5). Reference evapotranspiration (ET<sub>o</sub>) is calculated using the Penman-Monteith (PM) equation (Eq. 6).

| Parameter                    | Crop stage                        | Init. | Dev.  | Mid     | Late    | Harvesting | Total |
|------------------------------|-----------------------------------|-------|-------|---------|---------|------------|-------|
| Growing days                 | Length                            | 30    | 40    | 45      | 30      | 145        | 145   |
|                              | Starting day                      | Apr-1 | May-1 | June-10 | July-25 | Aug-24     |       |
| Crop                         | Kc values                         | 0.60  | 1.15  | 1.15    | 0.80    | 0.80       |       |
| coefficients                 | Ky values                         |       |       |         |         | 1.103      |       |
|                              | Kc basal                          | 0.15  | 1.10  | 1.10    | 0.70    |            |       |
| Rainfall                     | Rainfall coef. <sup>1</sup>       | 0.90  | 0.90  | 0.90    | 0.90    | 0.90       |       |
|                              | Rainfall min (mm) <sup>2</sup>    | 1.00  |       |         |         |            |       |
| Depletion fraction threshold |                                   | 0.40  | 0.40  | 0.40    | 0.40    |            |       |
| Irrigation                   | Irrigation threshold <sup>4</sup> | 0.40  | 0.40  | 0.40    | 0.40    |            |       |
|                              | Irr_supply_1 (to FC)              | 1.00  | 1.00  | 1.00    | 1.00    |            |       |
|                              | Irr_supply_2 (+-)                 | 0.00  | 0.00  | 0.00    | 0.00    |            |       |
|                              | Appl_efficiency                   | 0.85  | 0.85  | 0.85    | 0.85    |            |       |
|                              | Irr_wet_coef                      | 1.00  | 1.00  | 1.00    | 1.00    |            |       |

#### Table 7. Tomato crop and management inputs.

<sup>1</sup>To be multiplied with rainfall to obtain effective rainfall; <sup>2</sup>minimum amount of rainfall to be included in the calculation; lower than 1 mm is considered no rainfall; <sup>3</sup>whole season value; <sup>4</sup>under deficit irrigation scenarios, irrigation threshold during the entire season was set to be 0.6 and irrigation amount should be fulfilled field capacity water content.

### Table 8. Soil water characteristics.

| Layer | Depth [cm] | FC [vol%] | PWP [vol%] | SWC [mm/m] |
|-------|------------|-----------|------------|------------|
| 1     | 0–50       | 340       | 20         | 140        |
| 2     | 50-100     | 31        | 19         | 140        |
| 3     | 100-120    | 31        | 19         | 140        |

Table 9 summarizes the results obtained by the model. In April, the tomato crop needs 46 mm of water, in March 97 mm of water, etc. The water needs of tomatoes over the total growing season (April-August: 145 days) is 565 mm. Within it, 176 mm is supplied by the rainfall. The remaining 423.2 mm has to be supplied by irrigation. Total GIR is 497.8 mm and the greatest needs are in July (159 mm). In the case the tomato is

the only crop grown in the irrigation scheme, the irrigation system has to be designed in such a way to allow a flow large enough to supply 159 mm (in the peak month) or 0.59 l/s/ha<sup>2</sup>. In other words, for designing an irrigation scheme, the month of peak water supply is the critical month. If the irrigated area is 5 ha the total water need is 24,980 m<sup>3</sup>. However, this volume, corresponding to water demand, should be lower or equal to the

| Table | 9. Co | omputed | FTc. | Poff. | NIR. | and | GIR | for | tomato. |
|-------|-------|---------|------|-------|------|-----|-----|-----|---------|
| TUDIC | J. U  | mpatca  | LIC, | · em, |      | unu | 0   | 101 | comato  |

| Month         | ETo | ETc | P <sub>eff</sub> | NIR   | GIR   |  |  |  |  |  |
|---------------|-----|-----|------------------|-------|-------|--|--|--|--|--|
| April [mm]    | 77  | 46  | 55               | 14    | 16    |  |  |  |  |  |
| May [mm]      | 117 | 97  | 12               | 77    | 90    |  |  |  |  |  |
| June [mm]     | 139 | 158 | 60               | 133   | 156   |  |  |  |  |  |
| July [mm]     | 145 | 165 | 24               | 135   | 159   |  |  |  |  |  |
| August [mm]   | 111 | 99  | 25               | 65    | 76    |  |  |  |  |  |
| Seasonal [mm] | 590 | 565 | 176              | 423.2 | 497.8 |  |  |  |  |  |
|               |     |     |                  |       |       |  |  |  |  |  |

volume of water available at the gate (hydrant) of the irrigation scheme. Otherwise, some alternative management options should be examined.

<sup>&</sup>lt;sup>2</sup> In the design of irrigation systems, it is necessary to use water requirement of the peak period in dry year.

### 3.2.4 Water delivery performance indicators

Based on computed water balance components a key set of indicators can be related to the adequacy, equity, reliability, and consistency of the delivery system. Equity, as related to the water delivery system can be defined as the delivery of fair shares of water to the users throughout the system. Adequacy is an indicator for a water delivery system whether it attained a target or required water delivery over a certain period. The Relative Water Supply (RWS), Relative Irrigation Supply (RIS), and water use efficiency (WUE) are primary indicators used to assess the adequacy, equity, and efficiency of water utilization. RWS and RIS are used as the basic water supply indicators relating the water supply to the water demand.

Water supply can be either by rainfall, irrigation, or other inflows. The analysis of the scheme delivery performance, which determines how efficient the scheme is in delivering water to the farm boundary. The simplest, and yet probably the most important, operational performance indicator is the water delivery performance ratio (DPR).

$$DPR = \frac{Actual \ volume \ of \ water}{Intended \ volume \ of \ water}$$
(15)

Another index for assessing the sufficiency of water supply is the Water Availability Index (WAI).

$$WAI = \frac{\text{Total water supply}}{\text{Total water need}}$$
(16)

The index includes surface water as well as groundwater resources and compares the total water supply to total water needs.

Water use efficiency (WUE) is also often used to express the effectiveness of irrigation water delivery and use (entire distribution system). In irrigation, WUE represents the ratio between effective water use and actual water withdrawal. It characterizes, in a specific process, how effective is the use of water.

$$WUE = \frac{Crop water demand}{Total water supply} = \frac{ET_c}{IR + P_{eff}}$$
(17)

WUE assesses the adequacy, equity, and efficiency of water utilization. It can be calculated for conveyance, distribution, and application of the water to the irrigated field. The first two are determined at the scheme level while the latter at the field level.

The relative water supply (RWS) irrigation performance indicator focuses on the relation between the water that enters the system (total rainfall plus diverted irrigation supply) and the water required (evapotranspiration and leaching). It presents the natural view of the relationship between the amounts of water utilized for crop production and the amount of water delivered to meet crop demand.

$$RWS = \frac{\text{Total water supply}}{\text{Crop water demand}} = \frac{IR + P_{eff}}{ET_c + LR}$$
(18)

RWS greater than one indicates that the total water application, i.e., irrigation plus total rainfall is meeting crop demand at a temporal timescale of consideration (usually a year). Otherwise, if the RWS is lower implies that the majority of rainfall was not effective and that irrigation demand was not being matched by irrigation supply.

The relative irrigation supply (RIS) indicator relates the volume of irrigation water supplied to users during the irrigation season to the volume of irrigation water required for the crop throughout its life cycle. When irrigation and rainfall meet the water requirements RIS is near unity. If the RIS is less than one, a situation of under irrigation is occurring, with the irrigation demand not being met by the irrigation supply.

$$RIS = \frac{Irrigation water supply}{Irrigation water demand}$$
(19)

Crop Water Productivity (CWP) or Water Productivity (WP) is a more agronomic term that is commonly used to describe biophysical or economic gain from the use of a unit of water in crop production. Therefore, it could be defined as the relationship between agricultural output (in terms of biomass, yield, or economic value) and water consumed (crop evapotranspiration). Alternatively, in the denominator instead of crop ET can be used water supply (i.e., irrigation and precipitation). In the latter case, it can be named Irrigation Water Productivity (IWP).

### 3.2.5 Irrigation water quality

Irrigated agriculture is dependent on an adequate supply of water of usable quality. The quality of the irrigation water may affect both crop yields and soil physical properties, even if all other conditions and cultural practices are favorable/optimal. Besides, different crops require different irrigation water qualities. The quality of water in irrigation is also an important issue for the environment, resource management, and the health of the local population. The main issues of water quality in an irrigation system are related to salinity, environmental pollution, and water-related diseases. For irrigation water, the usual criteria include salinity, sodicity, and ion toxicities because they are major problems in irrigation waters. The parameters which determine the irrigation water quality are divided into three categories: physical, chemical, and biological (Fig. 11).



Fig. 11. Type of water quality parameters.

A summary of water quality parameters important for irrigation water sources is given in Table 10. Salinity is a common problem facing farmers who irrigate in arid climates whereas, in areas with intensive agriculture, fertilization is a major cause of aquifer salinization. A high salt concentration present in the water and soil will negatively affect crop yields, degrade the land and pollute groundwater. The presence of salts in the soil can reduce evapotranspiration by making soil water more bind to soil particles. Also, some salts can cause toxicity and affect plant metabolism and growth.

Table 10. Water quality parameters and level of concerns.

| Parameter                             | Level of Concern                     |  |  |  |
|---------------------------------------|--------------------------------------|--|--|--|
| рН                                    | <5.0 or >7.0                         |  |  |  |
| Total Alkalinity                      | < 30 or > 100 mg/L                   |  |  |  |
| Hardness (Ca and Mg)                  | < 50 or >150 mg/L                    |  |  |  |
| Calcium (Ca)                          | < 40 mg/L                            |  |  |  |
| Magnesium (Mg)                        | < 25 mg/L                            |  |  |  |
| Electrical Conductivity               | > 0.75 mmhos/cm                      |  |  |  |
| Total Dissolved Solids<br>(TDS)       | > 640 mg/L                           |  |  |  |
| Boron (B)                             | > 2.0 mg/L                           |  |  |  |
| Chloride (Cl)                         | > 100 mg/L                           |  |  |  |
| Sodium (Na)                           | > 50 mg/L                            |  |  |  |
| Sodium Adsorption Ratio<br>(SAR)      | > 2.0                                |  |  |  |
| Nitrate-Nitrogen (NO <sub>3</sub> -N) | >5.0 mg/L                            |  |  |  |
| Phosphorus (P)                        | > 5.0 mg/L (deficiency)<br>>1.0 mg/L |  |  |  |
| Potassium (K)                         | No concern for plant<br>growth.      |  |  |  |
| Sulfur (S)                            | <10 mg/L                             |  |  |  |
|                                       | > 0.30 mg/L micro-                   |  |  |  |
| Iron (Fe)                             | irrigation                           |  |  |  |
| non (re)                              | > 1.0 mg/L foliar spotting           |  |  |  |
|                                       | > 5.0 mg/L, toxicity                 |  |  |  |
|                                       | > 0.05 mg/L cloggin,                 |  |  |  |
| Manganese (Mn)                        | > 2.0 mg/L toxic to some             |  |  |  |
|                                       | sensitive plants.                    |  |  |  |
| Copper (Cu)                           | >0.20 mg/L                           |  |  |  |
| Molybdenum (Mo)                       | > 0.05 mg/L                          |  |  |  |
| Zinc (Zn)                             | > 0.30 mg/L                          |  |  |  |

Table 11 prescribes the guidelines for water use relative to its salt content. The Electrical Conductivity of a saturated extract method is the standard measure of salinity. The standard international unit of measure is decisiemens per meter (dS/m) corrected to a temperature of 25°C. Milimhos per centimeter (mmhos/cm) equals to dS/m and maybe still in use. In general, water for irrigation purposes must have a low to medium salinity level (i.e., the electrical conductivity of 0.6 to 1.7 dS/m).

| Table 11. Salinity | hazard of | f irrigation | water. |
|--------------------|-----------|--------------|--------|
|--------------------|-----------|--------------|--------|

| Hazard   | Bomorke                   | EC       |  |  |
|----------|---------------------------|----------|--|--|
| nazaru   | Remarks                   | (ds/m)   |  |  |
| None     | Used safely               | 0.75     |  |  |
| Minor    | With moderate leaching    | 0.75-1.5 |  |  |
| Moderate | With management practices | 1.5-3    |  |  |
| Severe   | Unsuitable for irrigation | 3-7.5    |  |  |

Water with high electrical conductivity of irrigation water (ECi>1.5) and sodium adsorption ratio (SAR>6) should not be used for irrigation. Nevertheless, in some places with water shortages, water with high salinity concentration is used as a supplement for other sources, and therefore good management and control are essential, and the salt tolerance of the plants must be considered.

If the irrigation water salinity exceeds the threshold for a crop, then yield reduction occurs. For soil salinities exceeding the threshold of any given crop, relative yield (Yr) can be estimated with the following equation:

$$Y_r = 100 - b (ECe - a)$$
 (20)

Where (b) is the percent loss in relative yield per unit increase in salinity, (a) is the EC threshold that a crop can tolerate and ECe is the electrical conductivity of the saturated soil paste, which is measured in the laboratory.

When salinity stress occurs without water stress, for conditions when  $EC_e > EC_e$  threshold and soil water depletion is less than the readily available soil water depth ( $D_r < RAW$ ) as given in Eq. 21:

$$K_s = 1 - \frac{b}{K_y \times 100} \times (EC_e - EC_{e,threshold})$$
 (21)

When soil water stress occurs in addition to salinity stress, for conditions when  $EC_e > EC_{e \text{ threshold}}$  and  $D_r > RAW$  the K<sub>s</sub> is computed:

$$K_{s} = \left(1 - \frac{b}{K_{y} \times 100} \times (EC_{e} - EC_{e, threshold})\right) \times \frac{TAW - D_{r}}{TAW - RAW}$$
(22)

Stress coefficient Ks should be used in Eq. 7 for the estimation of crop ET adjusted for salinity stress (when Ks is estimated by Eq. 21) and for both salinity and water stress (when Ks is estimated by Eq. 22).

Typical management practices for efficient use of high salinity water include more frequent irrigation, use of extra water for leaching, conjunctive use of fresh and saline waters, and growth of salt-tolerant crops and varieties.

To estimate the leaching requirement (LR), both the irrigation water salinity ( $EC_w$ ) and the crop tolerance to salinity, which is normally expressed as the electrical conductivity of the soil saturation extract ( $EC_e$ ), have to be known.

The LR can be calculated for surface and sprinkler irrigation method (Eq. 23) and localized irrigation and high frequency (near-daily) sprinkler (Eq. 24):

$$LR_{fraction} = \frac{EC_{w}}{5 EC_{e} - EC_{w}} \times \frac{1}{L_{e}}$$
(23)

$$LR_{fraction} = \frac{EC_{w}}{2 \operatorname{Max} EC_{e}} \times \frac{1}{L_{e}}$$
(24)

Where: LR (fraction) = The fraction of the water to be applied that passes through the entire root zone depth and percolates below; ECw = Electrical conductivity of irrigation water (dS/m); ECe = Electrical conductivity of the soil saturation extract for a given crop appropriate to the tolerable degree of yield reduction (dS/m); Max ECe = Maximum tolerable electrical conductivity of the soil saturation extract for a given crop (dS/m); Le = Leaching efficiency (in decimals).

The tolerance of various crops to the salinity of irrigation water is given in Table 12.

| Table 12. Yield reduction | in % at various | ECw for some crops |
|---------------------------|-----------------|--------------------|
|---------------------------|-----------------|--------------------|

| Field Crops         | C           | )%  |     | 10% |                        | 25% |                        | 50% | 3<br>"max | 100%<br>imum" |
|---------------------|-------------|-----|-----|-----|------------------------|-----|------------------------|-----|-----------|---------------|
|                     | <b>EC</b> e | ECw | ECe | ECw | <b>EC</b> <sub>e</sub> | ECw | <b>EC</b> <sub>e</sub> | ECw | ECe       | ECw           |
| Barley              | 8.0         | 5.3 | 10  | 6.7 | 13                     | 8.7 | 18                     | 12  | 28        | 19            |
| Cotton              | 7.7         | 5.1 | 9.6 | 6.4 | 13                     | 8.4 | 17                     | 12  | 27        | 18            |
| Sugarbeet           | 7.0         | 4.7 | 8.7 | 5.8 | 11                     | 7.5 | 15                     | 10  | 24        | 16            |
| Sorghum             | 6.8         | 4.5 | 7.4 | 5.0 | 8.4                    | 5.6 | 9.9                    | 6.7 | 13        | 8.7           |
| Wheat               | 6.0         | 4.0 | 7.4 | 4.9 | 9.5                    | 6.3 | 13                     | 8.7 | 20        | 13            |
| Wheat, durum        | 5.7         | 3.8 | 7.6 | 5.0 | 10                     | 6.9 | 15                     | 10  | 24        | 16            |
| Soybean             | 5.0         | 3.3 | 5.5 | 3.7 | 6.3                    | 4.2 | 7.5                    | 5.0 | 10        | 6.7           |
| Peanut              | 3.2         | 2.1 | 3.5 | 2.4 | 4.1                    | 2.7 | 4.9                    | 3.3 | 6.6       | 4.4           |
| Rice                | 3.0         | 2.0 | 3.8 | 2.6 | 5.1                    | 3.4 | 7.2                    | 4.8 | 11        | 7.6           |
| Sugarcane           | 1.7         | 1.1 | 3.4 | 2.3 | 5.9                    | 4.0 | 10                     | 6.8 | 19        | 12            |
| Corn (maize)        | 1.7         | 1.1 | 2.5 | 1.7 | 3.8                    | 2.5 | 5.9                    | 3.9 | 10        | 6.7           |
| Squash, zucchini    | 4.7         | 3.1 | 5.8 | 3.8 | 7.4                    | 4.9 | 10                     | 6.7 | 15        | 10            |
| Broccoli            | 2.8         | 1.9 | 3.9 | 2.6 | 5.5                    | 3.7 | 8.2                    | 5.5 | 14        | 9.1           |
| Tomato              | 2.5         | 1.7 | 3.5 | 2.3 | 5.0                    | 3.4 | 7.6                    | 5.0 | 13        | 8.4           |
| Cucumber            | 2.5         | 1.7 | 3.3 | 2.2 | 4.4                    | 2.9 | 6.3                    | 4.2 | 10        | 6.8           |
| Spinach             | 2.0         | 1.3 | 3.3 | 2.2 | 5.3                    | 3.5 | 8.6                    | 5.7 | 15        | 10            |
| Potato              | 1.7         | 1.1 | 2.5 | 1.7 | 3.8                    | 2.5 | 5.9                    | 3.9 | 10        | 6.7           |
| Corn, sweet (maize) | 1.7         | 1.1 | 2.5 | 1.7 | 3.8                    | 2.5 | 5.9                    | 3.9 | 10        | 6.7           |
| Sweet potato        | 1.5         | 1.0 | 2.4 | 1.6 | 3.8                    | 2.5 | 6.0                    | 4.0 | 11        | 7.1           |
| Pepper              | 1.5         | 1.0 | 2.2 | 1.5 | 3.3                    | 2.2 | 5.1                    | 3.4 | 8.6       | 5.8           |
| Lettuce             | 1.3         | 0.9 | 2.1 | 1.4 | 3.2                    | 2.1 | 5.1                    | 3.4 | 9.0       | 6.0           |
| Onion               | 1.2         | 0.8 | 1.8 | 1.2 | 2.8                    | 1.8 | 4.3                    | 2.9 | 7.4       | 5.0           |
| Carrot              | 1.0         | 0.7 | 1.7 | 1.1 | 2.8                    | 1.9 | 4.6                    | 3.0 | 8.1       | 5.4           |
| Bean                | 1.0         | 0.7 | 1.5 | 1.0 | 2.3                    | 1.5 | 3.6                    | 2.4 | 6.3       | 4.2           |
| Grapefruit          | 1.8         | 1.2 | 2.4 | 1.6 | 3.4                    | 2.2 | 4.9                    | 3.3 | 8.0       | 5.4           |
| Orange              | 1.7         | 1.1 | 2.3 | 1.6 | 3.3                    | 2.2 | 4.8                    | 3.2 | 8.0       | 5.3           |
| Peach               | 1.7         | 1.1 | 2.2 | 1.5 | 2.9                    | 1.9 | 4.1                    | 2.7 | 6.5       | 4.3           |
| Apricot             | 1.6         | 1.1 | 2.0 | 1.3 | 2.6                    | 1.8 | 3.7                    | 2.5 | 5.8       | 3.8           |
| Grape               | 1.5         | 1.0 | 2.5 | 1.7 | 4.1                    | 2.7 | 6.7                    | 4.5 | 12        | 7.9           |
| Almond              | 1.5         | 1.0 | 2.0 | 1.4 | 2.8                    | 1.9 | 4.1                    | 2.8 | 6.8       | 4.5           |
| Plum, prune         | 1.5         | 1.0 | 2.1 | 1.4 | 2.9                    | 1.9 | 4.3                    | 2.9 | 7.1       | 4.7           |
| Strawberry          | 1.0         | 0.7 | 1.3 | 0.9 | 1.8                    | 1.2 | 2.5                    | 1.7 | 4         | 2.7           |

### Example 2. Predicting salinity effects using simulation tools.

One of the outputs of  $IR_2MA$  includes the development and testing of the DSS tool **"EXCEL-IRR"** for irrigation under different cropping patterns and water quantity/quality scenarios. Five different irrigation water quality scenarios  $EC_w = 1 \text{ dS/m}$ ,  $EC_w = 2 \text{ dS/m}$ ,  $EC_w = 3 \text{ dS/m}$ ,  $EC_w = 4 \text{ dS/m}$  and  $EC_w = 5 \text{ dS/m}$  were tested for tomato crop. The different management input parameters are presented in Table 13. The Excel-IRR model utilizes yield-salinity equations from the FAO Irrigation and Drainage Paper No. 29 (FAO, 1985) with yield-ET equations from FAO Irrigation and Drainage Paper No 33. (FAO, 1979) to predict the yield reduction of the crop. Excel–IRR model (Todorovic, 2006) computes irrigation amounts from daily soil water balance equations according to management allowable soil water depletion and computes leaching requirements in the conditions where saline water is used for irrigation.

| Parameter              | EC <sub>w</sub> =1 | EC <sub>w</sub> = 2 | EC <sub>w</sub> = 3 | EC <sub>w</sub> =4 | EC <sub>w</sub> = 5 |
|------------------------|--------------------|---------------------|---------------------|--------------------|---------------------|
| ETc (mm)               | 564.3              | 541.6               | 472.3               | 403                | 333.7               |
| NIR (mm)               | 367.0              | 367.0               | 367.0               | 367.0              | 367.0               |
| Rainfall (mm)          | 176.4              | 176.4               | 176.4               | 176.4              | 176.4               |
| Drainage (mm)          | 28.7               | 58.2                | 127.5               | 196.8.9            | 266.1               |
| Leaching fraction (-)  | 0.00               | 0.15                | 0.15                | 0.15               | 0.15                |
| Leaching fraction (mm) | 0.0                | 56.4                | 56.4                | 56.4               | 56.4                |
| Relative yield (%)     | 99.7               | 95.3                | 81.8                | 68.4               | 54.9                |

For full irrigation, the results indicate the maximum yield in the scenario with the EC of irrigation water below the threshold value of  $EC_w$  for tomato crop ( $EC_{e,threshold}=1.7 \text{ dS/m}$ ). The increase in  $EC_w$  above the threshold resulted in the decrease of ETc and a relative yield decrease, going down to 54.9% at ECw = 5 dS/m. After every irrigation event, the model is set to apply water up to field capacity water content.

Consequently, the NIR remains constant at 367 mm for all treatments. However, due to salinity additional stress, an portion of water (15%, or 56.4 mm), is added as a leaching fraction. Leaching fraction remains the same in salinity stress treatments, whereas the drainage water increases with irrigation water salinity increase. The values of irrigation water productivity (IWP) decrease an with



Fig. 12. Water productivity (WP) and Irrigation Water Productivity (IWP) of tomatoes grown under full irrigation and different water quality.

increase in EC<sub>w</sub> from 16.3 kg/m<sup>3</sup>) to 7.8 kg/m<sup>3</sup> due to reduction of yield (Fig. 12). Nevertheless, the reduction of water productivity (Fig. 12) was much lower – less than 10% between the highest value at EC<sub>w</sub> = 1 dS/m and the lowest value observed at EC<sub>w</sub> = 5 dS/m. This is because both yield and crop ET decrease with the increase of irrigation water salinity above a predefined threshold.

## 4. Energy in irrigation and crop cultivation

Energy is embodied in all of the equipment, inputs, and products of agriculture. Consequently, is one of the most examined agricultural sustainability indicators of field operation (Lampridi et al., 2020). Irrigation accounts for a substantial portion of agricultural energy consumption and is the major energy-using process in arid regions of the world. All irrigation systems require energy that can direct or indirect (Fig. 13), as well as renewable and nonrenewable.



Fig. 13. Type of energy costs of agricultural operations.

Direct energy for irrigation is related to direct inputs (mostly electricity, diesel fuel, and labor) to run the irrigation system. It is consumed for various activities such as water extraction, conveyance, distribution, treatment, and desalination.

The direct energy of water extraction and pumping from ground and surface sources is a function of the level of pumping required, crop water requirement, total head, flow rate, and system efficiency (Eq. 25).

Energy (kWh) = 
$$\frac{\text{GIR} \times \text{TDH}}{367 \times \eta_{\text{p,m}}}$$
 (25)

Where:

GIR = Gross Irrigation requirement [m<sup>3</sup>]

TDH = Total Dynamic head [m]

 $\eta_{\text{p,m}}\text{=}$  efficiency of the complete unit (pump + motor)

Irrigation energy consumption may be affected by climatic conditions, cultural, and management practices. Energy for water pumping alone may be several times greater than that for all the other agricultural field operations combined, especially when the origin of the water is from deep wells. Table 14 summarizes the range of efficiencies for diesel and electrical pumps. About 0.0027 kWh of energy is used to lift 1 m<sup>3</sup> of water (with a density of 1000 kg/m<sup>3</sup>) 1 m at 100% efficiency. The efficiency of pumps varies with pump type and size.

| Table   | 14.  | Indicative | pump | efficiencies | for | diesel | and |
|---------|------|------------|------|--------------|-----|--------|-----|
| electri | ic m | otors.     |      |              |     |        |     |

| Pump type & efficiency           | Low | High |
|----------------------------------|-----|------|
| Pump hydraulic efficiency        | 60% | 90%  |
| Overall diesel pump efficiency   | 18% | 36%  |
| Overall electric pump efficiency | 48% | 86%  |

Electricity is more cost-efficient for pumping than diesel but not all farms can connect to the grid. Pumps can be powered by diesel or electrical energy with the latter supplied from the grid or renewable energy sources. Non-renewable energy sources include diesel fuel, electricity made from coal or natural gas, and machinery while renewable energy sources such as wind and solar systems. Diesel pumps also have higher maintenance requirements than electrical pumps.

The following default assumption is made when no better data is available:

- Arable crops: diesel-powered
- Perennials crops: electricity powered in OECD, diesel-powered in other countries
- Horticultural crops: electricity powered in OECD, diesel powered in other countries.

The total intensity (kWh/m<sup>3</sup>) depends upon the specific technologies applied at each stage of the water cycle. Energy use for irrigation water is a function of many variables, including water source, treatment, intended end-use, distribution, and amount of water loss in the system, and the level of wastewater treatment. Recycled water energy intensity is high by definition because the source water quality is low. The electrical energy consumption per m<sup>3</sup> of wastewater treated can vary, ranging from approximately 0.26–0.84

kWh/m<sup>3</sup> depending on several operational and environmental characteristics, such as pollutant loads, plant size and age, and type of WWTP. Membrane technologies tend to have a high energy consumption. The energy consumption for reverse osmosis plants (desalinated water) depends on the salinity of the feed water and the recovery rate.

The indirect energy is related to the operation performed but concern the acquisition and the ownership of the equipment the materials for dams, canals, pipes, pumps, and on-farm irrigation equipment. Indirect energy inputs can be determined from machine sizes, usage, and lifetimes. The energy embodied in the production of farm machinery is assumed to be depreciated over the economic life of the equipment (Eq. 26).

$$E_{ind} \left(\frac{unit}{ha}\right) = Weight (unit) \times \frac{Operation (h/ha)}{Equipment life time (h)}$$
 (26)

Based on the quantified inputs and outputs, composite energy-related indicators can be calculated (Table 15). Indicators of specific energy and energy efficiency are integrative indicators of potential environmental impacts of crop production (Khan et al., 2009). Because irrigation networks are water and energy-hungry and that both resources are scarce, many strategies have been developed to reduce this consumption. On-site energy conservation in irrigation can be accomplished through the following steps (Fig. 14):

|                             | Table 15. Energy-based performance indicators for irrigation water supply and crop production. |                                                       |                       |             |
|-----------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|-------------|
|                             | Indicator name                                                                                 | Indicator formula                                     | Unit                  | Domain      |
|                             | Creatific an army                                                                              | Energy consumed (kWh)                                 | kWh/m³                | Freezeware  |
| Specific energy             |                                                                                                | Water supplied (m <sup>3</sup> )                      |                       | Energy use  |
| Specific energy             |                                                                                                | Energy consumed (kWh)                                 | kWh/ha                | Energy      |
|                             |                                                                                                | Area irrigated (ha)                                   |                       | Energy use  |
| Specific energy             |                                                                                                | Energy consumed (kWh)                                 | kWh/kg                | Eporgyuso   |
|                             |                                                                                                | Yield (kg)                                            |                       | Lifergy use |
|                             |                                                                                                | Total energy output (kWh)                             | -                     | Production  |
| Energy efficiency           |                                                                                                | Total energy input (kWh)                              |                       | efficiency  |
|                             |                                                                                                | Yield (kg/ha)                                         | kg/kWh                | Production  |
|                             | Energy productivity                                                                            | Irrigation energy (kWh/ha)                            | -                     | efficiency  |
| Water-energy                |                                                                                                | Yield (kg)                                            | kg/kWh/m <sup>3</sup> | Production  |
|                             | productivity                                                                                   | Water supplied $(m^3) \times Irrigation energy (kWh)$ |                       | efficiency  |
| Water energy ratio          |                                                                                                | Energy input from water (kWh/ha)                      | %                     | Production  |
|                             |                                                                                                | Total energy input (kWh/ha)                           |                       | efficiency  |
| Mator direct on argu        | Water direct energy ratio                                                                      | Irrigation direct energy (kWh/ha)                     | %                     | Production  |
|                             | water unett energy fatio                                                                       | Total energy input (kWh/ha)                           |                       | efficiency  |
| Water indirect energy ratio |                                                                                                | Indirect irrigation energy (kWh/ha)                   | %                     | Production  |
|                             |                                                                                                | Total energy input (kWh/ha)                           |                       | efficiency  |



Fig. 14. Energy conservation steps in irrigation.

with water management, Along modern agriculture requires an energy input also at agricultural production such as direct use of energy in farm machinery, cultivation, and harvesting. One of the major energy inputs in arable farming is diesel fuel for field machinery associated with tillage operations where different methods and machinery are used. The life cycle inventory of fieldwork processes in crop production is closely linked to the crop and the production system. Specific volumetric fuel consumption for the given tractor power is 0.3 I/kW\*h for gasoline and 0.223 I/kW\*h for diesel tractors (Grisso et al., 2004). To be able to estimate diesel consumption for specific operations, it is necessary to know the duration of an operation, and the machines' effective power in kW, which usually has to be calibrated. In general, the specific fuel consumption of the tractor decreases as the load levels and the travel speeds increase (Farias et al., 2017). The indirect energy from the production of farm machinery and tractors can be expressed as the fractional weight of the equipment for a working unit of a specific process as given in Eq. 26.

Energy is also used for mineral fertilizers, chemical pesticides, fungicides, and herbicides in their production, distribution, and transport processes.

The energy demand of inputs in agricultural production is presented in Table 16. Energy consumption for different operations contributes towards the "total energy input" for agricultural production.

#### Table 16. Energy demand for inputs used in crop production.

| Input                                                       | CED       |
|-------------------------------------------------------------|-----------|
|                                                             | (MJ/unit) |
| Irrigation, (1 m <sup>3</sup> freshwater)                   | 6.4       |
| Electricity production, hard coal (kWh)                     | 11        |
| Electricity production, geothermal (kWh)                    | 37        |
| Electricity production, lignite (kWh)                       | 13.2      |
| Electricity production, oil (kWh)                           | 12.6      |
| Electricity production, peat (kWh)                          | 14.7      |
| Electricity production, hydro, run-of-river (kWh)           | 3.8       |
| Electricity production, hydro, pumped storage (kWh)         | 16.2      |
| Electricity production, nuclear (kWh)                       | 12.6      |
| Electricity production, natural gas (kWh)                   | 8.63      |
| Irrigation pump 40 Watt (unit)                              | 119.2     |
| High-Density Poly Ethylene (kg)                             | /8.6      |
| Polyvinyi chioride (kg)                                     | 82.5      |
| Low-Density Poly Ethylene (kg)                              | 81        |
| Polypropylene (kg)                                          | 76.5      |
| Aluminum (kg)                                               | 23.0      |
| Concrete (m <sup>3</sup> )                                  | 2476.2    |
| Plastic film (kg)                                           | 2470.Z    |
| Synthetic Rubber (kg)                                       | 94.2      |
| N generic fertilizer (kg N)                                 | 80.4      |
| N ammonium nitrate 27 5% N (kg N)                           | 64.6      |
| N urea, 46% N (kg N)                                        | 64.2      |
| N calcium nitrate. 11.86% N (kg N)                          | 20.2      |
| N urea-ammonium nitrate, 32% N (kg N)                       | 70.7      |
| N ammonium sulfate, 21% N (kg N)                            | 30.7      |
| N ammonia liquid, 82% N (kg N)                              | 41.2      |
| P generic fertilizer (kg P2O5)                              | 39.1      |
| P triple-superphosphate (kg P <sub>2</sub> O <sub>5</sub> ) | 38.3      |
| P superphosphate (kg $P_2O_5$ )                             | 42.5      |
| P di-ammonium phosphate (kg P₂O₅)                           | 35.9      |
| K potassium fertilizer (kg K <sub>2</sub> O)                | 15.4      |
| K potassium sulfate (kg K <sub>2</sub> O)                   | 25.8      |
| K potassium nitrate (kg)                                    | 18.3      |
| K potassium chloride (kg K <sub>2</sub> O)                  | 9.45      |
| Diesel fuel (kg)                                            | 57.8      |
| Lubricant oil (kg)                                          | 80.4      |
| Petrol, unleaded (kg)                                       | 60.7      |
| Tractor, 4-wheel (kg)                                       | 126.5     |
| Harvester (kg)                                              | 88        |
| Trailer (kg)                                                | 87        |
| Agriculture machinery, unspecified (kg)                     | 67.2      |
| Agriculture machinery, tillage (kg)                         | 75        |
| Industrial machine, heavy, unspecified,                     | 27.3      |
| Pesticide, unspecified                                      | 205.7     |
|                                                             |           |

### 5. Environmental impacts

Irrigation plays an essential role in crop cultivation and yield rates boost, and at the same time, it is one of the agricultural techniques with the highest environmental impact. Irrigation can affect the environment through:

- Direct impacts upon water sources both their quality and quantity, affecting ground and surface waters.
- Direct impacts upon soils both quality (e.g. through contamination) and quantity (through erosion).
- Direct impacts upon biodiversity and landscapes

   by displacing former habitats and creating new ones, by degrading or maintaining existing habitats, and by affecting the diversity and composition of landscapes.
- Secondary impacts arising from the intensification of agricultural production permitted by irrigation, such as increased fertilizer use.

From a nexus perspective impacts from agricultural irrigation include water application (extraction, conveyance, distribution) and production and construction of irrigation facilities.

Recently, life cycle analysis (LCA) is used to provide a broad view of the environmental impacts of irrigation.

### 5.1 Basics of Life cycle assessment (LCA)

LCA is a comprehensive method for assessing all direct and indirect environmental impacts across the full life cycle of a product system using metrics like carbon footprint (CF), water footprint (WF), acidification potential (AP), eutrophication potential (EP), toxicity-related and other additional indicators. An LCA standardized by ISO 14040 and 14044 is divided into four phases: Goal and scope definition, inventory analysis, Life Cycle Impact Assessment (LCIA), and Interpretation (Fig. 15).



Fig. 15. The four steps of LCA methodology.

### 5.1.1 Goal and scope definition

In the goal definition, the intended application and purpose of an LCA study are defined. During the scope definition, the product or process system under study is characterized, all assumptions are detailed and the methodology used to set up the production system is defined. The LCA can be either stand-alone or comparative. A standalone example is to identify the environmental impacts of crop cultivation with drip irrigation in Italy. A comparative LCA is to compare the environmental impacts of crop cultivation with surface and drip irrigation.

System boundaries determine the limits of the studied system, always in concordance with the proposed goal and scope. If the goal of the study is only irrigation (for the example case of a water user association) the boundaries start with pumping water from wells and water bodies and end with delivering water to the plant. It includes the water pumping, energy use, infrastructure, but not the onfarm water consumption and water emissions of irrigation (Fig. 16). In this case, the functional unit can be 1 m<sup>3</sup> irrigation water distributed to the pointof-use or 1 year of operation of the irrigation scheme. When the water supplied to the plants (1m<sup>3</sup>) and the water evaporated or infiltrated are include they shall be included in the crop production datasets (Fig. 17). Full-fledged cropbased LCA results are reported on mass (1 kg) to analyze the efficiency of a production system for a particular crop or area (1 ha) to analyze production intensity.



Fig. 16. Representation of the system boundaries for LCA of irrigation water supply.



Fig. 17. Representation of the system boundaries for LCA of crop production.

### 5.1.2 Life cycle inventory (LCI)

The 'life cycle inventory' is the result of the second step of an LCA. This phase is a data collecting activity to input-output analysis (Table 19) for all the processes and elements within the system boundary. It may include raw material input, electricity, fuel, and water embedded within the agricultural water use system.

| Table 17. Input to be collected for LCA of irrigation a | nd |
|---------------------------------------------------------|----|
| crop production.                                        |    |

| Input category                 | Input                                                                                                                                                                                                                                                                                     |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| LCA of irrigation water supply |                                                                                                                                                                                                                                                                                           |  |  |
| Irrigation                     | <ul> <li>Country</li> <li>Electricity mix</li> <li>Total water (m<sup>3</sup>) delivered for irrigation;</li> <li>Total diesel or electricity used for pumping (MJ);</li> <li>Total items used for irrigation infrastructure and their list of materials</li> </ul>                       |  |  |
| LCA of crop prod               | luction                                                                                                                                                                                                                                                                                   |  |  |
| Irrigation                     | <ul> <li>Region or Watershed to which<br/>it belongs</li> <li>Irrigation water consumption<br/>(m<sup>3</sup>) and their type;</li> <li>Total diesel or electricity used<br/>for pumping and application<br/>(MJ);</li> <li>Electricity mix</li> <li>Irrigation method applied</li> </ul> |  |  |
| Fertilization                  | <ul> <li>Amount per nutrient N, P, and<br/>K, or N-fertilizer type, P-<br/>fertilizer type, K-fertilizer type</li> </ul>                                                                                                                                                                  |  |  |
| Mechanization                  | <ul> <li>Total hours per work Process,</li> <li>Fuel consumption per work process</li> </ul>                                                                                                                                                                                              |  |  |
| Plant<br>protection            | <ul> <li>Amount of input per pesticide<br/>group: herbicide, insecticide,<br/>fungicide.</li> <li>Alternatively the total amount</li> </ul>                                                                                                                                               |  |  |
| Seeds                          | Quantity of seeds                                                                                                                                                                                                                                                                         |  |  |

To develop the inventory, a model of the system is usually constructed using data on inputs and outputs of each process. The emissions are classified as direct and indirect. Direct field and farm emissions are substances emitted from an agricultural area or directly at the

Farm (Fig. 17). Indirect emissions denote emissions that occur in the upstream processes, from the manufacturing of farm inputs used in agriculture or transports. The main direct field and farm emissions emitted from an agricultural area are listed in Table 20.

| Table 18. Main direct emissions from crop production. |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input category                                        | Input                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Emission to air                                       | <ul> <li>Water from irrigation         <ul> <li>(evapotranspired)</li> <li>NH<sub>3</sub>-based fertilizer</li> <li>N<sub>2</sub>O-based fertilizer</li> <li>NO<sub>x</sub>-based fertilizer</li> <li>CO<sub>2</sub>-urea based fertilizer</li> <li>Fuel combustion emissions                 (CO<sub>2</sub>, NH<sub>3</sub>, N<sub>2</sub>O, NO<sub>x</sub>, CH<sub>4</sub>, etc).</li> <li>Pesticides (if any applied)</li> </ul> </li> </ul> |  |
| Emission to<br>water                                  | <ul> <li>Phosphorus, surface water (P from erosion)</li> <li>Phosphate, surface water (PO4<sup>3-</sup> from run-off)</li> <li>Heavy metals: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni), and Zinc (Zn);</li> <li>Water from irrigation</li> </ul>                                                                                                                                                            |  |
| Mechanization                                         | • Fuel combustion emissions<br>(CO <sub>2</sub> , NH <sub>3</sub> , N <sub>2</sub> O, NO <sub>x</sub> , CH <sub>4</sub> , etc).                                                                                                                                                                                                                                                                                                                  |  |
| Plant<br>protection                                   | Field emissions                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |

## Table 40 Marin di

### 5.1.3 Life cycle impact assessment (LCIA)

Life cycle impact assessment (LCIA) quantifies the overall impact of resource consumption and environmental emissions at different stages of a product life cycle using impact assessment method/s. In practice, this step is usually carried out with LCA software, and the practitioner only chooses the method and some other details. The LCIA phase (Fig. 18) comprises two mandatory steps (classification and characterization) and two optional steps (normalization and weighting).



Fig. 18. LCIA Steps for environmental impact in one single score.

Classification is a qualitative step based on scientific analysis of relevant environmental mechanisms. For example, CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O are grouped into global warming, whereas NO<sub>x</sub> and SO<sub>x</sub> are grouped into acidification. Certain outputs (e.g. emissions) contribute to various impact categories. Characterizing impacts involves assessing the environmental impacts of impact categories due to the flows identified in the product system. A distinction must be made between the midpoint (problem-oriented) and endpoint end-point (damage-oriented). The former translates impacts on environmental themes such as water consumption, climate change, acidification, human toxicity, etc., while the latter translates environmental impacts into issues of concern such as human health, natural environment, and natural resources (Huijbregts et al., 2017). Thus, the potential impacts are estimated at the mid- or endpoint levels through characterization factors. The indicator result received at the midpoint level is calculated as follows:

$$I_{\rm m} = \sum_{\rm i} Q_{\rm m,i} \times m_{\rm i} \tag{27}$$

Where:  $I_m$  - Indicator result for midpoint impact category m;  $Q_{m,i}$  - Characterization factor between intervention i and the midpoint impact category m;  $m_i$  - Magnitude of intervention i unit of environmental pressure for intervention (i.e. the mass of substance emitted or resource consumed). The indicator result received at the endpoint level can be extracted in two ways. One is to calculate the indicator result at the endpoint level based on the indicator result at the midpoint level:

$$I_{e} = \sum_{i} Q_{e,i} \times m_{i}$$
 (28)

Where:  $I_e$  - Indicator result for endpoint impact category m;  $Q_{e, i}$  - Characterization factor between intervention i and the endpoint impact category m;  $m_i$  - Magnitude of intervention i unit of environmental pressure for intervention (i.e. the mass of substance emitted or resource consumed). The other way is through bypassing the midpoints and calculate the indicator result based on the intervention:

$$I_{e} = \sum_{i} Q_{e,m} \times I_{m}$$
(29)

Where:  $I_e$  - Indicator result for endpoint impact category m;  $Q_{e,m}$  - Characterization factor between intervention i and the endpoint impact category m;  $I_m$  - Indicator result for midpoint impact category m;

Usually, the interpretation of the endpoint results does not require a thorough knowledge of the environmental effects (easy decisions can be made), however, the statistical uncertainties are higher. On the other hand, midpoint results may be more difficult to interpret because they consider a large number of impacts, but provide robust results (Caffrey and Veal, 2013). For communication purposes, the category indicators may be normalized concerning reference values. The normalization of the respective mid- and endpoint category adjusts the indicator result to the result of the region of interest (for example, the world), and it varies depending on ideological perspective.

Weighting is a procedure that can be quantitative or qualitative and applies weights (weighting factors) to each impact category following the relevance attributed by, for instance, decision-makers or specialists. The weighting of the endpoint impact categories also varies depending on the ideological perspective.

There are many impact assessment methods like TRACI, commonly used in the United States;
Ecoindicator, ReCiPe, and ILCD, employed in Europe; and the CML method. These LCIA methods operate with midpoint and endpoint indicators or both. These footprint calculation methods provide different levels of detail (Leach et al., 2016). The CML methodology, developed by the Institute of Environmental Sciences of the University of Leiden in the Netherlands, is the most used and is often considered the most complete.

LCAs are used by a variety of users for a range of purposes such as marketing, product development, product improvement, strategic planning. Carbon footprint (CF), water footprint (WF), and life cycle assessment (LCA) are popular formalized methods for calculating and communicating the sustainability criteria behind the product footprint (EC, 2010).

#### 5.1.4 Water footprint (WF)

Water Footprint (WF) is an important metric to assess potential impacts associated with water all along the life cycle. It can be applied as a standalone assessment or as part of an LCA. The WF is recognized as an important sustainability indicator for the agri-food sector guiding policy towards sustainable use of freshwater (Aivazidou et al., 2015). The concept allows calculating the total volume of freshwater that is used directly (operational) or indirectly (supply chain =) to produce the product or service (Hoekstra et al.,

2011). Direct water refers to the water (i.e. irrigation water) that is consumed on-farm to produce agricultural products/s. Indirect water consumption relates to water consumed by the supply chain (or background processes or water embedded in energy, pump, fertilizers, or other farm inputs). WF can be conducted for a single product (crop), several products (whole cropping pattern) within a geographically delineated region. The WF can be measured

 $m^{3}$ /ton,  $m^{3}$ /ha,  $m^{3}$ / $\in$ , and in other functional units.

Concerning the use of water, WF includes quantity (consumption or consumptive use) and quality of the resource (degradative use) footprint.

"Consumptive use" describes all freshwater losses on the watershed level which are caused by evaporation, evapotranspiration from plants, freshwater integration into products, and release of freshwater from the technosphere into seawater (e.g. from wastewater treatment plants located on the coastline). "Degradative use", in contrast, denotes the use of water with associated quality alterations and describes the pollution of water (e.g. if tap water is transformed to wastewater during use). The WF assessment methods are proposed by two different communities (Fig. 19), the Water Footprint Network (WFN), and the Life Cycle Assessment (LCA) community (Pfister et al., 2017). The WFN approach is based on indicators at the inventory level; an LCA-based water footprint is based on indicators at the impact assessment level. The WFA methodology addresses freshwater resources appropriation in a four-step approach including setting goals and scope, water footprint accounting, sustainability assessment, and response formulation (Figure 6). Similar to life cycle assessment (LCA), the water footprint assessment consists of four phases namely: setting goals and scope (Phase 1); water footprint accounting (Phase 2); water footprint sustainability assessment (Phase 3); water footprint response formulation (Phase 4).



Fig. 19. Phases of LCA and WFA assessment.

Water footprint accounting (WF) - The Hoekstra et.al., 2011 approach



The total water footprint of the process of growing crops ( $WF_{crop}$ ) is the sum of the green, blue, and grey components. The green component in the process water footprint of growing a crop or tree ( $WF_{crop}$ , green,  $m^{3}$ /ton) is calculated as the green component in crop water use ( $CWU_{green}$ ,  $m^{3}$ /ha) divided by the crop yield (Y, ton/ha). The blue component ( $WF_{crop}$ , blue,  $m^{3}$ /ton) is calculated similarly.

$$WF_{crop} = WF_{crop,green} + WF_{crop,blue} + WF_{crop,grey}$$
 [Volume/mass] (30)

The green and blue components in crop water use (CWU, m<sup>3</sup>/ha) are calculated by the accumulation of daily evapotranspiration (ET, mm/day) over the complete growing period. Factor 10 is meant to convert water depths in millimeters into water volumes per land surface in m<sup>3</sup>/ha.

$$WF_{crop,green} = \frac{10 \times \sum_{d=1}^{lgp} ET_{green}}{Y}$$
(31)

$$WF_{crop,blue} = \frac{10 \times \sum_{d=1}^{lgp} ET_{blue}}{Y}$$
(32)

Where:  $CWU_{green}$  - green component in crop water use (m<sup>3</sup>/ha),  $CWU_{blue}$  - blue component in crop water use (m<sup>3</sup>/ha), Y - Crop yield (Y, ton/ha).

Green and blue water evapotranspiration during crop growth can be estimated with the CROPWAT model (Smith, 1992). Green water evapotranspiration ( $ET_{green}$ ), in other words, evapotranspiration of rainfall, can be equated with the minimum of total crop evapotranspiration ( $ET_c$ ) and effective rainfall ( $P_{eff}$ ). Bluewater evapotranspiration ( $ET_{blue}$ ), in other words, field-evapotranspiration of irrigation water, is equal to the total crop evapotranspiration minus effective rainfall ( $P_{eff}$ ), but zero when effective rainfall exceeds crop evapotranspiration:

$$ET_{green} = \min (ET_c, P_{eff}) \qquad [length/time] \qquad (33)$$

$$ET_{blue} = \max (0, ET_{c} - P_{eff}) \qquad [length/time]$$
(34)

In the case of rain-fed crop production, blue CWU is zero and green CWU (m<sup>3</sup>/ha) was calculated by aggregating the daily values of actual crop evapotranspiration over the length of the growing period. In the case of irrigated crop production, the green water use was assumed to be equal to the actual crop evapotranspiration for the case without irrigation. The grey component in the water footprint of growing a crop or tree (WF<sub>crop</sub>, grey, m<sup>3</sup>/ton) is calculated as the chemical application rate to the field per hectare (AR, kg/ha) times the leaching-run-off fraction ( $\alpha$ ) divided by the maximum acceptable concentration ( $c_{max}$ , kg/m<sup>3</sup>) minus the natural concentration for the pollutant considered ( $c_{nat}$ , kg/m<sup>3</sup>) and then divided by the crop yield (Y, ton/ha). The pollutants generally consist of fertilizers (nitrogen, phosphorus, and so on), pesticides, and insecticides.

$$WF_{crop,grey} = \frac{\frac{(\alpha \times AR)}{(c_{max} - c_{net})}}{\gamma}$$
(35)

### Example 3. Application of the EXCEL-IRR model for WF assessment.

This section provides an example of how to estimate the green, blue, and gray water footprint applied to the cultivation process of one hectare of irrigated Tomatoesin Capitanata, Southern Italy. Green-blue water evapotranspiration (Table 19) was estimated using the Excel-IRR model (Todorovic, 2006) using climatic and crop data. The total evapotranspiration of the green water is obtained by adding  $ET_{green}$  to the growth period. The evapotranspiration of blue water ( $ET_{blue}$ ) is estimated as the difference between the total evapotranspiration of the actual total rainfall ( $P_{eff}$ ). When the actual rainfall is greater than the total crop evapotranspiration,  $ET_{blue}$  is equal to zero.

| Southern nury. |        |        |                  |         |         |           |          |
|----------------|--------|--------|------------------|---------|---------|-----------|----------|
| Month          | ЕТо    | ETc    | P <sub>eff</sub> | NIR     | GIR     | CWU green | CWU blue |
| wonth          | mm/day | mm/dec | (mm/ha)          | (mm/ha) | (mm/ha) | (mm/ha)   | (mm/ha)  |
| April [mm]     | 77     | 46     | 55               | 14      | 16      | 46        | 0        |
| May [mm]       | 117    | 97     | 12               | 77      | 90      | 12        | 77       |
| June [mm]      | 139    | 158    | 60               | 133     | 156     | 60        | 133      |
| July[mm]       | 145    | 165    | 24               | 135     | 159     | 24        | 135      |
| August [mm]    | 111    | 99     | 25               | 65      | 76      | 25        | 65       |
| Seasonal [mm]  | 590    | 565    | 176              | 423.2   | 497.8   | 167       | 410      |

Table 19. Calculation of the green and blue components of the process water footprint for tomato in Capitanata,Southern Italy.

Table 20 and Fig. 16 detail the water footprint values of tomatoes for an average yield of 60 tons/ha. The total water footprint of the cultivation process (total WF) is the sum of the green, blue and gray components in the volume of water by mass The total WF was calculated 121 m<sup>3</sup>/ton. Of this total, the green WF 23% or 27.8 m<sup>3</sup>/ton is rainwater evaporated from the tomato field during the growing period. About 56% or 68.3 m<sup>3</sup>/ton is irrigation water consumed (evaporated) by the tomato plant. The grey WF for a nitrogen application rate of 150 kg/ha and a leaching rate of 15% was calculated at 25 m<sup>3</sup>/ton. This is 21% of the total water footprint.

| Table  | 20.  | Water     | footprint  | indicators  | of   | tomato |
|--------|------|-----------|------------|-------------|------|--------|
| produc | tion | using the | e Hoekstra | 2011 approa | ich. |        |

| Components                                                    | Unit   | <b>WF</b> total |
|---------------------------------------------------------------|--------|-----------------|
| Crop Yield                                                    | ton/ha | 60              |
| WF <sub>green</sub>                                           | m³/ton | 27.8            |
| WF <sub>blue</sub>                                            | m³/ton | 68.3            |
| WF <sub>grey</sub> (Eq. 34)                                   | m³/ton | 25              |
| WF <sub>green</sub> + WF <sub>blue</sub> + WF <sub>grey</sub> | m³/ton | 121.4           |

The analysis of water scarcity in a monthly phase provides information on the scarcity that is not revealed in the annual studies, in particular the fact that the scarcity occurs in some periods of the year and not in others.



Fig. 20. Share of green, blue, and grey water footprint indicators of tomato production using the Hoekstra 2011 approach.

## 5.1.4.1 Water scarcity footprint (WSF) – The AWARE method

The AWARE method is to be used as a water use midpoint indicator for calculating water scarcity impact. It assesses the potential of water deprivation, to either humans or ecosystems, building on the assumption that the less water remaining available per area, the more likely another user will be deprived (Boulay et al., 2018). The AWARE method is recommended by the UNEP-SETAC Life Cycle Initiative, the PEF/OEF Program of the European Commission, and the International EPD system to assess water consumption impact assessment in LCA. The method is based on the quantification of the relative Available WAter REmaining per area once the demand of humans and aquatic ecosystems has been met. It is first calculated as the water Availability Minus the Demand (AMD) of humans and aquatic ecosystems and is relative to the area  $(m^3 m^{-2} month^{-1})$ . The AMD (availability minus demand, Eq. 36) represents the relative available water remaining per area in a watershed (i.e., determining the water availability minus the demand of humans and environmental water requirements (EWR)). The sum of human water consumption (HWC) and environmental water requirement (EWR) is referred to as demand.

$$AMD_{i,j} = \frac{A_{i,j} - (HWC_{i,j} + EWR_{i,j})}{Area_j} \quad (36)$$

Where: A<sub>i,i</sub> is the water availability in the ith month in region j (m<sup>3</sup>/month); HWC<sub>i,i</sub> is the human water (m<sup>3</sup>/month); consumption EWR<sub>i,j</sub> is the environmental water requirement (m<sup>3</sup>/month); Area<sub>j</sub> is the jth area (m<sup>2</sup>). In a second step, the AWARE indicator is scaled by the world weightedthe water average result for AMDs (0.0136 m<sup>3</sup> m<sup>-2</sup>month<sup>-1</sup>), expressed in m region/m<sup>3</sup> word-equivalent and representing whether a region has more or less remaining water in comparison to the world average region where water is consumed.

$$CF_{AWARE_{i,j}} = \frac{1/AMD_{i,j}}{1/AMD_{world.avg}} = \frac{AMD_{i,j}}{AMD_{world.avg}}$$
(37)

The CF<sub>i,j</sub> is a dimensionless AWARE characterization factor, expressed as  $m^3$  world-eq/ $m^3_{i,j.}$  The Aware indicator is limited to a range from 0.1 to 100, with a value of 1 corresponding to the world average, and a value of 10, for example, representing a region where there is 10 times less available water remaining per area than the world average. The AWARE CFs close to 100 means that has no or very little remaining freshwater in an area and consequently this area is facing water scarcity (Kaewmai et al. 2019).

$$CF_{AWARE_{i,j}} = Max = 100, for AMD_i < 0.01 \times AMD_{world avg}$$
 (38)

$$CF_{AWARE_{i,j}} = Min = 0.1, for AMD_i > 10 \times AMD_{world average}$$
(39)

The local AWARE characterization factor is meant to be multiplied with the local water consumption inventory for Water scarcity characterization:  $WSF_{AWaRe}$  (Eq. 40). The water scarcity footprint (WSF) is the metric that quantifies the potential environmental impacts related to water scarcity (based on ISO 14046:2014).

$$WSF_{AWARE} = WC_{i,j} \times CF_{AWARE_{i,j}}$$
 (40)

The AWARE characterization factors for water scarcity footprint in m<sup>3</sup> world eq./m<sup>3</sup> consumed in country-level values (annual and monthly, excel format) and (Sub) Watershed level (annual and monthly, google earth) are available at http://www.wulca-waterlca.org/aware.html. The WSF<sub>AWARE</sub> for inputs in agriculture is presented in Table 21.

Table 21. Water scarcity footprint for inputs used incrop production.

| Input                                                       | WSF           |
|-------------------------------------------------------------|---------------|
|                                                             | (m³/unit)     |
| Irrigation, (1 m <sup>3</sup> freshwater, avg Europe)       | 43.4          |
| Electricity production, hard coal (kWh)                     | 0.08          |
| Electricity production, geothermal (kWh)                    | 0.56          |
| Electricity production, lignite (kWh)                       | 0.12          |
| Electricity production, oil (kWh)                           | 0.10          |
| Electricity production, peat (kWh)                          | 0.15          |
| Electricity production, hydro, run-of-<br>river (kWh)       | 0.0023        |
| Electricity production, hydro, pumped                       | 0.27          |
| Electricity production, puclear (kW/h)                      | 0.37          |
| Electricity production, natural gas (kW/b)                  | 0.15          |
| Irrigation nump 40 Watt (unit)                              | 0.035<br>A A1 |
| High-Density Poly Ethylene (kg)                             | 0.52          |
| Polyvinyl chloride (kg)                                     | 2 45          |
| Low-Density Poly Ethylene (kg)                              | 0.77          |
| Polypropylene (kg)                                          | 0.68          |
| Reinforcing Steel (kg)                                      | 0.00          |
| Aluminum (kg)                                               | 2.47          |
| Concrete (m <sup>3</sup> )                                  | 157.60        |
| Plastic film (kg)                                           | 0.90          |
| Synthetic Rubber (kg)                                       | 1.80          |
| N generic fertilizer (kg N)                                 | 5.50          |
| N ammonium nitrate, 27.5% N (kg N)                          | 3.40          |
| N urea, 46% N (kg N)                                        | 7.96          |
| N calcium nitrate, 11.86% N (kg N)                          | 1.13          |
| N urea-ammonium nitrate, 32% N (kg N)                       | 3.42          |
| N ammonium sulfate, 21% N (kg N)                            | 0.23          |
| N ammonia liquid, 82% N (kg N)                              | 2.47          |
| P generic fertilizer (kg P <sub>2</sub> O <sub>5</sub> )    | 2.76          |
| P triple-superphosphate (kg P <sub>2</sub> O <sub>5</sub> ) | 4.51          |
| P superphosphate (kg P <sub>2</sub> O <sub>5</sub> )        | 2.34          |
| P di-ammonium phosphate (kg P₂O₅)                           | 0.00          |
| K potassium fertilizer (kg K <sub>2</sub> O)                | 2.18          |
| K potassium sulfate (kg K <sub>2</sub> O)                   | 1.56          |
| K potassium nitrate (kg)                                    | 0.73          |
| K potassium chloride (kg K <sub>2</sub> O)                  | 0.43          |
| Diesel fuel (kg)                                            | 27.54         |
| Lubricant oil (kg)                                          | 0.46          |
| Petrol, unleaded (kg)                                       | 0.29          |
| Tractor, 4-wheel (kg)                                       | 2.71          |
| Harvester (kg)                                              | 2.40          |
| Trailer (kg)                                                | 2.49          |
| Agriculture machinery, unspecified (kg)                     | 2.03          |
| Agriculture machinery, tillage (kg)                         | 2.21          |
| Industrial machine, heavy, unspecified,                     | 1.84          |
| Pesticide, unspecified                                      | 3.59          |

#### 5.1.5 Carbon footprint (CF)

The carbon footprint is the total amount of GHG emitted throughout it's the life cycle of a product or service, expressed in kilograms of CO<sub>2</sub>equivalents. A carbon footprint is often interchanged with global warming potential (GWP). However other different terms have been suggested and/or used, such as climate footprint, CO2 footprint, GHG footprint, and methane footprint (Čuček et al., 2012). The emissions from any purchased agricultural goods can be estimated as shown in Eq. 41.

$$GWP [kgCO_{2-eq}] = AD \times EF$$
 (41)

Where: AD = activity data on inputs consumed or produced by a process (unit); EF = Emission factor that converts activity data into greenhouse gas emissions data (e.g. kg CO<sub>2</sub>-eq emitted per kWh of electricity used).

When direct emissions data has been collected, an emission factor is not needed and the basic equation to calculate inventory results for input, output, or process is:

$$GWP [kgCO_{2-eq}] = AD_{GHG} \times GWP_{GHG}$$
(42)

Where: AD = activity data on greenhouse gas i such as carbon dioxide, methane, or nitrous oxide released by a process (unit); GWP = a factor describing the radiative forcing impact (degree of harm to the atmosphere) of one unit of a given GHG, relative to one unit of  $CO_2$  over a 100-year time horizon.

The "carbon footprint" calculation is based on LCA principles with a 100 years time horizon. The main agricultural GHG is carbon dioxide ( $CO_2$ ), methane ( $CH_4$ ), and nitrous oxide ( $N_2O$ ). Fossil fuel use is the primary source of  $CO_2$  while fertilizer use is the primary source of  $N_2O$  emissions. Enteric fermentation of feed in the stomachs of livestock (particularly cattle) is the largest single source of CH4. Nitrous Oxide ( $N_2O$ ) has a GWP 265 - 298 times that of  $CO_2$  for a 100-year timescale. Methane (CH4) is estimated to have a GWP of 28 -

36 over 100 years. Precipitation and soil N fertilization are factors that drive emissions GHG emissions where nitrogen fertilization and water additions have been reported to increase  $N_2O$  emissions (Kostyanovsky et al., 2019). Soil  $N_2O$  are classified as direct (Eq. 43) and indirect emissions (Eq.44 and Eq. 45).

$$GWP_{N2O-N,d} = F_{SN} \times EF_1 \times GWP_{N2O}$$
(43)

Where:  $GWP_{N2O-d}$  - Global warming from direct  $N_2O$  emission as a result of nitrogen application within the project boundary;  $F_{SN}$  - Total amount of nitrogen applied from synthetic fertilizer;  $EF_1$  - Emission Factor for emissions from N inputs,

Indirect  $N_2O$  emissions from atmospheric deposition (Eq. 44) and agricultural N leaching and runoff (Eq.45).

 $GWP_{N2O-N,ATD} = F_{SN} \times F_{GASF} \times EF_4 \times GWP_{N2O}$ (44)

$$GWP_{N2O-N,L} = F_{SN} \times F_{Leach} \times EF_5 \times GWP_{N2O}$$
 (45)

Where: GWP- Global warming from indirect N2O emission associated atmospheric deposition from NH<sub>3</sub> volatilization; FGASF - partitioning factor for the fraction of synthetic fertilizer N applied to soils that volatilize as NH<sub>3</sub> and NOx; EF4 - Emission factor for N<sub>2</sub>O emissions from atmospheric deposition of N on soils and water surfaces, kg N<sub>2</sub>O–N/ kgNH<sub>3</sub>-N/kg N. GWP<sub>N2O-L</sub> - Global warming from indirect N<sub>2</sub>O emission associated with fertilizer leaching and runoff; Fleach - partitioning factor for the fraction of fertilizer and manure N applied to soils that are lost through leaching and runoff. EF5 - Fraction of all N added to/mineralized in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff, kg N/kg N additions.

Conversion of  $N_2O-N$  emissions to  $N_2O$  emissions for reporting purposes is performed by multiplying by 1.571429 (44/28).

Emissions from soils and livestock are usually calculated using equations and default factors from

Table 22. The carbon footprint for inputs used in cropproduction.

| Input                                                       | CF                   |
|-------------------------------------------------------------|----------------------|
|                                                             | (kgCO <sub>2</sub> - |
|                                                             | eq/unit)             |
| Irrigation, (1 m <sup>3</sup> freshwater)                   | 0.35                 |
| Electricity production, hard coal (kWh)                     | 1.15                 |
| Electricity production, geothermal (kWh)                    | 0.065                |
| Electricity production, lignite (kWh)                       | 1.32                 |
| Electricity production, oil (kWh)                           | 0.93                 |
| Electricity production, peat (kWh)                          | 1.49                 |
| Electricity production, hydro, run-of-river (kWh)           | 0.005                |
| Electricity production, hydro, pumped                       |                      |
| storage (kWh)                                               | 1.14                 |
| Electricity production, nuclear (kWh)                       | 0.015                |
| Electricity production, natural gas (kWh)                   | 0.489                |
| Irrigation pump 40 Watt (unit)                              | 8.7                  |
| High-Density Poly Ethylene (kg)                             | 2.1                  |
| Polyvinyl chloride (kg)                                     | 5.14                 |
| Low-Density Poly Ethylene (kg)                              | 2.26                 |
| Polypropylene (kg)                                          | 2.12                 |
| Reinforcing Steel (kg)                                      | 0.000                |
| Aluminum (kg)                                               | 4.66                 |
| Concrete (m <sup>3</sup> )                                  | 399.9                |
| Plastic film (kg)                                           | 0.59                 |
| Synthetic Rubber (kg)                                       | 3.10                 |
| N generic fertilizer (kg N)                                 | 10.86                |
| N ammonium nitrate, 27.5% N (kg N)                          | 8.55                 |
| N urea, 46% N (kg N)                                        | 3.5                  |
| N calcium nitrate, 11.86% N (kg N)                          | 3.2                  |
| N urea-ammonium nitrate, 32% N (kg N)                       | 0.5                  |
|                                                             | 2.04                 |
| N ammonia liquid, 82% N (kg N)                              | 2.09                 |
| P generic fertilizer (kg $P_2O_5$ )                         | 2.10                 |
| P triple-superphosphate (kg P <sub>2</sub> O <sub>5</sub> ) | 1.73                 |
| P superphosphate (kg P <sub>2</sub> O <sub>5</sub> )        | 1.85                 |
| P di-ammonium phosphate (kg P <sub>2</sub> O <sub>5</sub> ) | -                    |
| K potassium fertilizer (kg K <sub>2</sub> O)                | 0.75                 |
| K potassium sulfate (kg K <sub>2</sub> O)                   | 1.49                 |
| K potassium nitrate (kg)                                    | 2.45                 |
| K potassium chloride (kg K <sub>2</sub> O)                  | 0.55                 |
| Diesel fuel (kg)                                            | 0.60                 |
| Lubricant oil (kg)                                          | 1.20                 |
| Petrol, unleaded (kg)                                       | 0.83                 |
| Tractor, 4-wheel (kg)                                       | 8.59                 |
| Harvester (kg)                                              | 6.94                 |
| Trailer (kg)                                                | 7.39                 |
| Agriculture machinery, unspecified (kg)                     | 5.92                 |
| Agriculture machinery, tillage (kg)                         | 6.76                 |
| Industrial machine, heavy, unspecified.                     | 2.45                 |
| Pesticide, unspecified                                      | 11.18                |
| / F                                                         |                      |

IPCC publications (Table 23). The direct  $N_2O$  emissions are estimated using a default factor of 1% from IPCC (2006). This means 1% of the N input is lost to the atmosphere as  $N_2O$ -N. The uncertainty range for this emission factor is 0.3%-3%. The results converted from kg  $N_2O$ -N to kg  $N_2O$  by multiplying by the ratio of  $N_2O/N_2O$ -N (44/28).

| Table   | 23.   | Low,     | average,              | and   | high  | emissior | n factors  |
|---------|-------|----------|-----------------------|-------|-------|----------|------------|
| used t  | for e | estima   | ting N <sub>2</sub> O | emis  | sions | from N   | fertilizer |
| and lii | me u  | ising II | PCC guide             | lines |       |          |            |

| Category                                                                  | Symbol            | Low              | Avg.             | High |
|---------------------------------------------------------------------------|-------------------|------------------|------------------|------|
| Direct N <sub>2</sub> O<br>emission<br>(kg N <sub>2</sub> O-N/kg N added) | EF1               | 0.03<br>%        | 1%               | 3%   |
| %N fertilizer that<br>volatilizes<br>(kg NH3-N + NOx-N)/ kg<br>N applied  | F <sub>GASM</sub> | 3%               | 10%              | 30%  |
| EF for volatilized N<br>(kg N2O-N/ (kg NH3-N +<br>NOx-N volatized)        | EF4               | 0.2%             | 1%               | 5%   |
| % of N fertilizer<br>that leach                                           | Fleach            | 10%              | 30%              | 80%  |
| EF for leached N<br>(kg N leaching or runoff<br>/ kg N applied)           | EF₅               | 0.05<br><i>%</i> | 0.75<br><i>%</i> | 2.5% |

## EXAMPLE. Calculations footprint from synthetic fertilizers

To grow the potato crop in 1 ha the farmer uses 250 ammonium nitrate with 27.5% nitrogen content. The estimated total amount of nitrogen applied ( $F_{SN}$ ) is therefore 68.75 kg N. The direct N<sub>2</sub>O emission from Eq. 43 is calculated at 1.08 kg N<sub>2</sub>O/ha. The indirect N<sub>2</sub>O emission from atmospheric deposition (Eq. 44) becomes 0.11 kg N<sub>2</sub>O/ha while from agricultural N leaching and runoff (Eq. 45) becomes 0.24 kg N<sub>2</sub>O/ha. Considering the CF of N<sub>2</sub>O = 265 kgCO<sub>2</sub>-eq/kg N<sub>2</sub>O the total carbon footprint from soil N<sub>2</sub>O emission is 379 kgCO<sub>2</sub>-eq/ha.

## Example 4. Calculation of CF and WSF of a crop and all processes.

The objective of this example is to analyze the CFand WSF of tomato production in an Italian open field from a cradle to the farm-gate perspective (Fig. 17). The reference unit of analysis is 1 ha and 1 kg of fresh tomatoes. The inventory (Table 24) includes the processes of growing tomatoes on arable land. The NIR of Tomato is 4500 m<sup>3</sup>/ha. Tomato is grown under drip irrigation systems (90% efficiency) supplied by an electricity-powered pump with a capacity at 3.5 bars pressure output (total pressure head) and overall pump efficiency of 63%. Field N<sub>2</sub>O emissions were estimated using Eq. 43, 44, and 45.

## Table 24. Input/output for tomato cultivation.

| Tomato Crop                              | Input   |
|------------------------------------------|---------|
| Yield (ton/ha)                           | 100     |
| GIR (mm/ha)                              | 500     |
| Energy irrigation (kWh)                  | 1046.83 |
| N (kg/ha)                                | 150     |
| $P_2O_5$ (kg/ha)                         | 100     |
| K <sub>2</sub> O (kg/ha)                 | 150     |
| Pesticides (kg/ha)                       | 5       |
| Fuel (kg)                                | 50.00   |
| Tractor (kg/ha)                          | 5.00    |
| Direct (N <sub>2</sub> O), nitrification | 2.36    |
| N₂O, leaching                            | 0.53    |
| N <sub>2</sub> O, volatilization         | 0.24    |

The GWP resulting from tomato cultivation is estimated to be  $3511 \text{ kg CO}_2$ -eq/ha or  $35.11 \text{ kg CO}_2$ -eq/ton. About 80% of total GWP is produced from fertilizers, 13% from irrigation, 5% from mechanization, and 2% from pesticides (Fig. 21).

#### Table 25. GWP and WSF for 1 ha of tomato cultivation.

| Process       | Global warming | WSF     |  |
|---------------|----------------|---------|--|
|               | (GWP100a)      | (AWARE) |  |
| Irrigation    | 469.65         | 18,792  |  |
| Fertilization | 2815.53        | 1256,95 |  |
| Mechanization | 170.3          | 25,51   |  |
| Pesticides    | 55.89          | 17,96   |  |

Production of nitrogen fertilizer produced 46% of impacts while the  $N_2O$  emissions due to nitrogen fertilization produced 24% of total GWP. About 74% correspond to the background sub-system and the rest to the foreground (Fig. 21).



Fig. 21. GWP and WSF analysis of tomato cultivation at subsystem and process levels.

The total calculated WSF was 20,091 m<sup>3</sup> worldeq/ha or 200 m<sup>3</sup> world-eq/ ton. About 93.5% was related to irrigation WSF and the rest to the production of fertilizers, pesticides, fuel, and tractors. About 92.8% correspond to the foreground system due to irrigation water use while the rest to the background (Fig. 21). It should be noted that the scarcity has wide regional disparities. The *annual AWARE Agri* factor (Boulay and Lenoir 2020) for Italian Northern regions is significantly lower (e.g. 2.89 m<sup>3</sup> world eq./m<sup>3</sup> for Lombardy or 2.91 m<sup>3</sup> world eq./m<sup>3</sup> for Piemonte) while for south like Sicily and Apulia is the highest (92.1 and 90.89 m<sup>3</sup> world eq/m<sup>3</sup> consumed, respectively).

# 6. Eco-efficiency of irrigated cropping systems

Eco-efficiency is a management strategy of doing more with less (Glavič et al., 2012). The benefits of eco-efficiency research are significant and show that its application will lead to efficient resource utilization while minimizing environmental impact (John et al., 2020).

Eco-efficiency is recognized as a sustainability measure combining environmental and economic performances (Saling, 2016). Therefore, an ecoefficiency indicator is a ratio between an environmental and a financial variable. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) are appropriate methodologies to investigate the ecoefficiency of production systems. The ISO has published in 2012 an International Standard (ISO 14045:2012) of eco-efficiency. The assessment framework is presented in Fig. 22. The environmental assessment in eco-efficiency shall be conducted based on life cycle assessment standards ISO 14040/14044.



Fig. 22. Eco-efficiency assessment framework (ISO 14045:2012).

Usually, eco-efficiency indicators are ratios of valueadded and environmental indicators (use of nature).

$$EEI = \frac{Total value added}{Environmental impact}$$
(46)

Five generic environmental issues include the following: (a) water use; (b) Energy use; (c) Global warming contribution; (d) Ozone-depleting substances; (e) Waste.

The TVA due to water and fertilizer use and adopted management practices is calculated as follows.

$$TVA = ((C_y \times MP_P) - EXP_{NW}) - TFC_{WS} - TIC$$
(47)

Where:  $C_Y - Crop$  yield (kg/ha); MP – The market price of the product ( $\notin$ /kg); EXP<sub>NW</sub> – representing the expenses for all the non-water inputs; TFC<sub>WS</sub> – Total financial cost related to water supply provision; TIC – Annual equivalent future cash flow generated from the introduction of new technologies in the system.

Differently based on the determined environmental impact indicators (LCA) and the LCC indicator representing the discounted stream of life cycle costs and depicting the cost of producing a product unit equivalent to the functional unit adopted in the LCA analysis, the eco-efficiency indicator can be determined as follows

$$EEI = \frac{1}{LCA \times LCC}$$
(48)

The LCC is the total cost incurred in the life cycle including initial investment cost; installation and commissioning costs, energy cost, operating cost, maintenance and repairs costs, downtime, loss of production, environmental costs, disposal costs.

The eco-efficiency method includes a weighting of environmental impacts and costs, resulting in a twodimensional diagram and four quadrants (Fig. 23).

This graph enables the reader an easier understanding and simultaneous assessment of efficiency and eco-efficiency of product/services studied. By considering all attributes and aspects within one Eco-efficiency Assessment, potential trade-offs can be identified and assessed. Improved quality or increased value and reduced environmental impact lead to better eco-efficiency of a product or production system.



Fig. 23. The weighting of environmental impacts and costs, resulting in a two-dimensional diagram.

## 6.1 Example - Eco-efficiency of tomato production

Using data in Table 26 eco-efficiency of the tomato cropping system is computed. The total value added was  $6631 \notin$ /ha and  $66.3 \notin$ /ton. The gross production value was  $8000 \notin$ /ha The computed eco-efficiency indicator as a ratio total valued added to environmental impact (global warming) was  $1.74 \notin$ /kgCO<sub>2</sub>.eq. The assessment LCA and LCC results were aggregated and presented in the form of the eco-efficiency portfolio (Fig. 24) including a sensitivity analysis of price, yield, and resource efficiency.

| Tomato Crop                   | Input                                    | Price/Cost |
|-------------------------------|------------------------------------------|------------|
| Yield                         | 100 ton/ha                               | 80 €/ton   |
| GIR                           | 500 mm/ha                                | 0.1 €/m³   |
| Energy irrigation             | 1046.83 kWh                              | 0.12 €/kWh |
| N                             | 150 kg N/ha                              | 1.35 €/kg  |
| P <sub>2</sub> O <sub>5</sub> | 100 kg P <sub>2</sub> O <sub>5</sub> /ha | 0.75 €/kg  |
| K <sub>2</sub> O              | 150 kg K₂O /ha                           | 1.5 €/kg   |
| Pesticides                    | 5 kg/ha                                  | 35 €/kg    |
| Fuel                          | 50 kg/ha                                 | 1 €/kg     |
| Tractor                       | 10 <b>h</b> /ha                          | 25 €/h     |

Table 26. Crop market price and cost incurred per unit input in tomato cultivation.



Fig. 24. Eco-efficiency portfolio combining economic (TVA) and ecological data (carbon footprint) for tomato production under different crop input and management strategies.

## 7. Conclusions

This guidebook presents a framework and a specific set of data and basic indicators to help researchers, agricultural water districts, and irrigation organizations for the evaluation of irrigation system performance using a nexus lens and eco-efficiency performance. This helps to better understand the complex and dynamic interrelationships between resource use and generated impacts. By using this guidebook all the target stakeholders can:

- Enhance global knowledge of water-supply balance at farm-level;
- Learn more about the fundamentals of energy use in water pumping;
- Assess water-related energy use and energy-related water use for irrigation and other field operations at farm level;
- Calculate water-energy-environment nexus of irrigation and other field operations at farm level;
- Monitoring of crop and irrigation system performance from one year to another with a special focus on eco-efficiency as a proxy of sustainability;

### References

- Aivazidou, E., Tsolakis, N., Vlachos, D., Iakovou, E., 2015. Water footprint management policies for agrifood supply chains: A critical taxonomy and a system dynamics modelling approach. Chem. Eng. Trans. https://doi.org/10.3303/CET1543020
- Alexandratos, N., Bruinsma, J., 2012. World agriculture towards 2030/2050. ESA Work. Pap. Nr 12-03, 154.
- Bos, M.G., 1997. Performance indicators for irrigation and drainage. Irrig. Drain. Syst. https://doi.org/10.1023/A:1005826407118
- Boulay, A.M., Bare, J., Benini, L., Berger, M., Lathuillière, M.J., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A.V., Ridoutt, B., Oki, T., Worbe, S., Pfister, S., 2018. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. https://doi.org/10.1007/s11367-017-1333-8
- Čuček, L., Klemeš, J.J., Kravanja, Z., 2012. A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2012.02.036
- Elshaikh, A.E., Jiao, X., Yang, S. hong, 2018. Performance evaluation of irrigation projects: Theories, methods, and techniques. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2018.02.034
- FAO, 2017. Water for Sustainable Food and Agriculture Water for Sustainable Food and Agriculture, A report produced for the G20 Presidency of Germany.
- Farias, M.S. de, Schlosser, J.F., Linares, P., Barbieri, J.P., Negri, G.M., Oliveira, L.F.V. de, Rüdell, I.I.P., 2017. Fuel consumption efficiency of an agricultural tractor equipped with continuously variable transmission. Ciência Rural. https://doi.org/10.1590/0103-8478cr20160814
- Gorantiwar, S.D., Smout, I.K., 2005. Performance assessment of irrigation water management of heterogeneous irrigation schemes: 1. A framework for evaluation. Irrig. Drain. Syst. https://doi.org/10.1007/s10795-005-2970-9
- Grisso, R.D., Kocher, M.F., Vaughan, D.H., 2004. Predicting Tractor Diesel Fuel Consumption. Appl. Eng. Agric.
- Hamidov, A., Helming, K., 2020. Sustainability considerations in water-energy-food nexus research in irrigated agriculture. Sustain. https://doi.org/10.3390/SU12156274
- Hoekstra, A.Y., Chapagain, A.K., Aldaya, M.M., Mekonnen, M.M., 2011. The Water Footprint Assessment Manual Setting the Global Standard, Water Footprint Network.
- Huijbregts, M.A.J., Steinmann, Z.J..., Elshout, P.M.F., Stam, G., Verones, F., Vieira, M.D.M., Hollander, A., Zijp, M., van Zelm, R., 2017. ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. RIVM Report 2016-0104a.
- John, I., Kwofie, E.M., Ngadi, M., 2020. Two decades of eco-efficiency research: a bibliometric analysis. Environ. Sustain. https://doi.org/10.1007/s42398-020-00105-1
- Kostyanovsky, K.I., Huggins, D.R., Stockle, C.O., Morrow, J.G., Madsen, I.J., 2019. Emissions of N2O and CO2 following short-term water and n fertilization events in wheat-based cropping systems. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00063
- Lampridi, M., Kateris, D., Sørensen, C.G., Bochtis, D., 2020. Energy footprint of mechanized agricultural operations. Energies. https://doi.org/10.3390/en13030769
- Malano, H., Burton, M., Makin, I., 2004. Benchmarking performance in the irrigation and drainage sector: A tool for change. Irrig. Drain. https://doi.org/10.1002/ird.126
- Molden, D.J., Gates, T.K., 1990. Performance measures for evaluation of irrigation-water-delivery systems. J. Irrig. Drain. Eng. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:6(804)
- Perret, S.R., Payen, S., 2020. IRRIGATION AND THE ENVIRONMENTAL TRAGEDY: PATHWAYS TOWARDS SUSTAINABILITY IN AGRICULTURAL WATER USE, in: Irrigation and Drainage. https://doi.org/10.1002/ird.2404
- Pfister, S., Boulay, A.M., Berger, M., Hadjikakou, M., Motoshita, M., Hess, T., Ridoutt, B., Weinzettel, J., Scherer, L., Döll, P., Manzardo, A., Núñez, M., Verones, F., Humbert, S., Buxmann, K., Harding, K., Benini, L., Oki, T., Finkbeiner, M., Henderson, A., 2017. Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA." Ecol. Indic. https://doi.org/10.1016/j.ecolind.2016.07.051
- Rai, R.K., Singh, V.P., Upadhyay, A., 2017. Irrigation Project Planning, in: Planning and Evaluation of Irrigation Projects. https://doi.org/10.1016/b978-0-12-811748-4.00002-9
- Reinhard, S., Verhagen, J., Wolters, W., Ruben, R., 2017. Water-food-energy nexus. Wageningen. https://doi.org/10.18174/424551
- Saladini, F., Betti, G., Ferragina, E., Bouraoui, F., Cupertino, S., Canitano, G., Gigliotti, M., Autino, A., Pulselli, F.M., Riccaboni, A., Bidoglio, G., Bastianoni, S., 2018. Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecol. Indic.

https://doi.org/10.1016/j.ecolind.2018.04.035

Saling, P., 2016. Eco-efficiency Assessment. https://doi.org/10.1007/978-94-017-7610-3\_4

- Smith, M., 1992. CROPWAT: A computer program for irrigation planning and management, FAO Irrigation and Drainage Paper 46.
- Terrapon-Pfaff, J., Ortiz, W., Dienst, C., Gröne, M.C., 2018. Energising the WEF nexus to enhance sustainable development at local level. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2018.06.037
- Todorovic, M., 2006. an Excel-Based Tool for Real-Time Irrigation Management At Field Scale, in: Proceedings of International Symposium on Water and Land Management for Sustainable Irrigated Agriculture. pp. 1–11. https://doi.org/10.13140/2.1.2696.4163
- Vignani, D., Tagliacozzo, G., S, T., 2016. Water use in agriculture and in food products industry . A case study for Italy to evaluate pressure on water resources 18–24. https://doi.org/10.1481/icasVII.2016.d24d
- Vincent, B., Vlotman, W.F., Zimmer, D., Hornbuckle, J.W., 2007. Performance assessment and potential indicators for drainage systems. CSIRO L. Water Sci. Rep. 62/7.
- Weitz, N., Nilsson, M., Davis, M., 2014. A Nexus Approach to the Post-2015 Agenda: Formulating Integrated Water, Energy, and Food SDGs. SAIS Rev. Int. Aff. 34, 37–50. https://doi.org/10.1353/sais.2014.0022

#### Annexes

#### **ANNEX 1. Length of growth stages**

FAO Irrigation and Drainage Paper No. 24 and 56 provide general information about the lengths of the four distinct growth stages from the irrigation aspect, and the total growing period for various types of climates and locations. The table below is adopted from FAO Irrigation and Drainage Paper No. 56. The users of the EXCEL-IRR model are encouraged to search for the crop growth stages length in their local climatic and regional conditions.

The initial and development periods for some crops may be relatively short as they develop new leaves in spring fastly (deciduous trees and shrubs). The first period of development is affected by weather conditions in general and by mean daily air temperature in particular. Therefore, the length of time between planting and effective full cover varies depending on climate, latitude, elevation and planting date, and cultivar. The ending point of the mid-season and beginning of the late season is usually determined by leaves senescence. The length of the late-season period may be relatively short depending on weather conditions or crop type (some are harvested fresh). High temperatures accelerate the ripening and senescence of crops and cause some crops to go into dormancy. Moisture stress or other environmental stresses usually accelerate the rate of crop maturation and can shorten the mid and late season growing periods.

The values in Table A1 can be used only as a general guide and for comparison purposes. The listed lengths of growth stages are average lengths for the regions and periods specified. The users should adopt local observations of the specific plant stage development.

| TABLE A1. Lengths of crop development stages* | for various planting periods and climatic regions (days) – Adopted from FAO IDP |
|-----------------------------------------------|---------------------------------------------------------------------------------|
| 56 (Allen et al., 1998).                      |                                                                                 |

| Сгор                      | Init.               | Dev.                | Mid                 | Late                 | Total   | Plant Date   | Region              |
|---------------------------|---------------------|---------------------|---------------------|----------------------|---------|--------------|---------------------|
|                           | (L <sub>ini</sub> ) | (L <sub>dev</sub> ) | (L <sub>mid</sub> ) | (L <sub>late</sub> ) |         |              |                     |
| a. Small Vegetables       |                     |                     |                     |                      |         |              |                     |
| Broccoli                  | 35                  | 45                  | 40                  | 15                   | 135     | Sept         | Calif. Desert, USA  |
| Cabbage                   | 40                  | 60                  | 50                  | 15                   | 165     | Sept         | Calif. Desert, USA  |
|                           | 20                  | 30                  | 50/30               | 20                   | 100     | Oct/Jan      | Arid climate        |
| Carrots                   | 30                  | 40                  | 60                  | 20                   | 150     | Feb/Mar      | Mediterranean       |
|                           | 30                  | 50                  | 90                  | 30                   | 200     | Oct          | Calif. Desert, USA  |
| Cauliflower               | 35                  | 50                  | 40                  | 15                   | 140     | Sept         | Calif. Desert, USA  |
|                           | 25                  | 40                  | 95                  | 20                   | 180     | Oct          | (Semi) Arid         |
| Celery                    | 25                  | 40                  | 45                  | 15                   | 125     | April        | Mediterranean       |
|                           | 30                  | 55                  | 105                 | 20                   | 210     | Jan          | (Semi) Arid         |
|                           | 20                  | 30                  | 20                  | 10                   | 80      | April        | Mediterranean       |
| Cruciters <sup>1</sup>    | 25                  | 35                  | 25                  | 10                   | 95      | February     | Mediterranean       |
|                           | 30                  | 35                  | 90                  | 40                   | 195     | Oct/Nov      | Mediterranean       |
|                           | 20                  | 30                  | 15                  | 10                   | 75      | April        | Mediterranean       |
| Lettuce                   | 30                  | 40                  | 25                  | 10                   | 105     | Nov/Jan      | Mediterranean       |
|                           | 25                  | 35                  | 30                  | 10                   | 100     | Oct/Nov      | Arid Region         |
|                           | 35                  | 50                  | 45                  | 10                   | 140     | Feb          | Mediterranean       |
| Onion (dry)               | 15                  | 25                  | 70                  | 40                   | 150     | April        | Mediterranean       |
|                           | 20                  | 35                  | 110                 | 45                   | 210     | Oct; Jan.    | Arid Region; Calif. |
|                           | 25                  | 30                  | 10                  | 5                    | 70      | April/May    | Mediterranean       |
| Onion (green)             | 20                  | 45                  | 20                  | 10                   | 95      | October      | Arid Region         |
|                           | 30                  | 55                  | 55                  | 40                   | 180     | March        | Calif., USA         |
| Onion (seed)              | 20                  | 45                  | 165                 | 45                   | 275     | Sept         | Calif. Desert, USA  |
| Spinach                   | 20                  | 20                  | 15/25               | 5                    | 60/70   | Apr; Sep/Oct | Mediterranean       |
| ·                         | 20                  | 30                  | 40                  | 10                   | 100     | November     | Arid Region         |
| Radish                    | 5                   | 10                  | 15                  | 5                    | 35      | Mar/Apr      | Medit.; Europe      |
|                           | 10                  | 10                  | 15                  | 5                    | 40      | Winter       | Arid Region         |
| b. Vegetables - Solanum F | amily (Sol          | anaceae)            |                     |                      |         |              |                     |
| Egg plant                 | 30                  | 40                  | 40                  | 20                   | 130/140 | October      | Arid Region         |
|                           | 30                  | 45                  | 40                  | 25                   | 130/140 | May/June     | Mediterranean       |
| Sweet peppers (bell)      | 25/30               | 35                  | 40                  | 20                   | 125     | April/June   | Europe and Medit.   |
|                           | 30                  | 40                  | 110                 | 30                   | 210     | October      | Arid Region         |
|                           | 30                  | 40                  | 40                  | 25                   | 135     | January      | Arid Region         |
| Tomato                    | 35                  | 40                  | 50                  | 30                   | 155     | Apr/May      | Calif., USA         |
|                           | 35                  | 45                  | 70                  | 30                   | 180     | Oct/Nov      | Arid Region         |
|                           | 30                  | 40                  | 45                  | 30                   | 145     | April/May    | Mediterranean       |
| Cantaloupe                | 30                  | 45                  | 35                  | 10                   | 120     | Jan          | Calif., USA         |
|                           | 10                  | 60                  | 25                  | 25                   | 120     | Aug          | Calif., USA         |
| Cucumber                  | 20                  | 30                  | 40                  | 15                   | 105     | June/Aug     | Arid Region         |
|                           | 25                  | 35                  | 50                  | 20                   | 130     | Nov; Feb     | Arid Region         |
| Pumpkin, Winter squash    | 20                  | 30                  | 30                  | 20                   | 100     | Mar, Aug     | Mediterranean       |
|                           | 25                  | 35                  | 35                  | 25                   | 120     | June         | Europe              |
| Squash, Zucchini          | 25                  | 35                  | 25                  | 15                   | 100     | Apr; Dec.    | Medit.; Arid Reg.   |
|                           | 20                  | 30                  | 25                  | 15                   | 90      | May/June     | Medit.; Europe      |
| Sweet melons              | 25                  | 35                  | 40                  | 20                   | 120     | May          | Mediterranean       |
|                           | 30                  | 30                  | 50                  | 30                   | 140     | March        | Calif., USA         |
|                           | 30                  | 45                  | 65                  | 20                   | 160     | Dec/Jan      | Arid Region         |
| Water melons              | 20                  | 30                  | 30                  | 30                   | 110     | April        | Italy               |
|                           | 10                  | 20                  | 20                  | 30                   | 80      | May/Aug      | Near East (desert)  |

<sup>&</sup>lt;sup>1</sup> Crucifers include cabbage, cauliflower, broccoli, and Brussel sprouts. The wide range in lengths of seasons is due to varietal and species differences.

TABLE A1. Continued

| Сгор                           | Init.               | Dev.                | Mid                 | Late                 | Total         | Plant Date               | Region               |
|--------------------------------|---------------------|---------------------|---------------------|----------------------|---------------|--------------------------|----------------------|
| d Roots and Tubers             | (L <sub>ini</sub> ) | (L <sub>dev</sub> ) | (L <sub>mid</sub> ) | (L <sub>late</sub> ) |               |                          |                      |
|                                | 15                  | 25                  | 20                  | 10                   | 70            | Apr/May                  | Mediterranean        |
| Beets, table                   | 25                  | 30                  | 20                  | 10                   | 90            | Eeb/Mar                  | Mediterranean & Arid |
| Cassava: vear 1                | 20                  | 40                  | 90                  | 60                   | 210           | Rainy                    |                      |
| vear 2                         | 150                 | 40                  | 110                 | 60                   | 360           | season                   | riopical regions     |
| ycu 2                          | 25                  | 30                  | 30/45               | 30                   | 115/130       | lan/Nov                  | (Semi) Arid Climate  |
|                                | 25                  | 30                  | 45                  | 30                   | 130           | May                      | Continental Climate  |
| Potato                         | 30                  | 35                  | 50                  | 30                   | 145           | April                    | Furope               |
| 101010                         | 45                  | 30                  | 70                  | 20                   | 165           | Apr/May                  | Idaho, USA           |
|                                | 30                  | 35                  | 50                  | 25                   | 140           | Dec                      | Calif. Desert. USA   |
|                                | 20                  | 30                  | 60                  | 40                   | 150           | April                    | Mediterranean        |
| Sweet potato                   | 15                  | 30                  | 50                  | 30                   | 125           | Rainy seas.              | Tropical regions     |
|                                | 30                  | 45                  | 90                  | 15                   | 180           | March                    | Calif., USA          |
|                                | 25                  | 30                  | 90                  | 10                   | 155           | lune                     | Calif., USA          |
|                                | 25                  | 65                  | 100                 | 65                   | 255           | Sept                     | Calif. Desert. USA   |
| Sugarbeet                      | 50                  | 40                  | 50                  | 40                   | 180           | Anril                    | Idaho USA            |
| ouguineet                      | 25                  | 35                  | 50                  | 50                   | 160           | May                      | Mediterranean        |
|                                | 45                  | 75                  | 80                  | 30                   | 230           | November                 | Mediterranean        |
|                                | 35                  | 60                  | 70                  | 40                   | 205           | November                 | Arid Regions         |
| e. Legumes <i>(Leguminosae</i> | )<br>)              | 00                  | 70                  | 40                   | 205           | November                 |                      |
| e. Legumes (Legummosue         | 20                  | 30                  | 30                  | 10                   | 90            | Feb/Mar                  | Calif Mediterranean  |
| Beans (green)                  | 15                  | 25                  | 25                  | 10                   | 75            | Aug/Sen                  | Calif Egypt Lebanon  |
|                                | 20                  | 30                  | 40                  | 20                   | 110           | May/lune                 | Continental Climates |
| Beans (drv)                    | 15                  | 25                  | 35                  | 20                   | 95            | lune                     | Pakistan Calif       |
| beans (ary)                    | 25                  | 25                  | 30                  | 20                   | 100           | lune                     | Idaho USA            |
| Faba bean, broad bean          | 15                  | 25                  | 35                  | 15                   | 90            | May                      | Furope               |
|                                | 20                  | 30                  | 35                  | 15                   | 100           | Mar/Apr                  | Mediterranean        |
| - drv                          | 90                  | 45                  | 40                  | 60                   | 235           | Nov                      | Furone               |
| - green                        | 90                  | 45                  | 40                  | 0                    | 175           | Nov                      | Europe               |
| Green gram cowneas             | 20                  | 30                  | 30                  | 20                   | 110           | March                    | Mediterranean        |
| Groundnut                      | 25                  | 35                  | 45                  | 25                   | 130           | Dry                      | West Africa          |
| Groundhat                      | 35                  | 35                  | 35                  | 25                   | 140           | season                   | High Latitudes       |
|                                | 35                  | 45                  | 35                  | 25                   | 140           | May                      | Mediterranean        |
|                                | 55                  |                     | 55                  | 25                   | 140           | May/June                 | Weatterraitean       |
| Lentil                         | 20                  | 30                  | 60                  | 40                   | 150           | April                    | Europe               |
|                                | 25                  | 35                  | 70                  | 40                   | 170           | Oct/Nov                  | Arid Region          |
| Peas                           | 15                  | 25                  | 35                  | 15                   | 90            | May                      | Furope               |
|                                | 20                  | 30                  | 35                  | 15                   | 100           | Mar/Apr                  | Mediterranean        |
|                                | 35                  | 25                  | 30                  | 20                   | 110           | April                    | Idaho, USA           |
| Sovbeans                       | 15                  | 15                  | 40                  | 15                   | 85            | Dec                      | Tropics              |
|                                | 20                  | 30/35               | 60                  | 25                   | 140           | Mav                      | Central USA          |
|                                | 20                  | 25                  | 75                  | 30                   | 150           | lune                     | lanan                |
| f. Perennial Vegetables (v     | vith winte          | er dormancy         | and initial         | lv bare or           | mulched soil) |                          |                      |
|                                | 40                  | 40                  | 250                 | 30                   | 360           | Apr (1 <sup>st</sup> vr) | California           |
| Artichoke                      | 20                  | 25                  | 250                 | 30                   | 325           | May (2 <sup>nd</sup> vr) | (cut in Mav)         |
|                                | 50                  | 30                  | 100                 | 50                   | 230           | Feb                      | Warm Winter          |
| Asparagus                      | 90                  | 30                  | 200                 | 45                   | 365           | Feb                      | Mediterranean        |

TABLE A1. Continued.

| Сгор                      | Init.  | Dev.                | Mid                 | Late    | Total | Plant Date        | Region                   |
|---------------------------|--------|---------------------|---------------------|---------|-------|-------------------|--------------------------|
| g Fibre Crops             | (Lini) | (L <sub>dev</sub> ) | (L <sub>mid</sub> ) | (Llate) |       |                   |                          |
| g. 11010 010p3            | 30     | 50                  | 60                  | 55      | 195   | Mar-May           | Egypt: Pakistan: Calif   |
|                           | 45     | 90                  | 45                  | 45      | 225   | Mar               | Calif Desert USA         |
| Cotton                    | 30     | 50                  |                     | 55      | 195   | Sent              | Vemen                    |
|                           | 30     | 50                  | 55                  | 45      | 180   | Anril             | Texas                    |
|                           | 25     | 35                  | 50                  | 40      | 150   | April             | Furope                   |
| Flax                      | 30     | 40                  | 100                 | 50      | 220   | October           | Arizona                  |
| h Oil Crons               | 50     | -10                 | 100                 | 50      | 220   | October           | All2011d                 |
|                           | 25     | 40                  | 65                  | 50      | 180   | March             | (Semi) Arid Climates     |
| Castor beans              | 20     | 40                  | 50                  | 25      | 135   | Nov               | Indonesia                |
|                           | 20     | 35                  | 45                  | 25      | 125   | Anril             | California LISA          |
| Safflower                 | 25     | 35                  | 55                  | 30      | 145   | Mar               | High Latitudes           |
| Jamowei                   | 35     | 55                  | 60                  | 40      | 190   |                   | Arid Region              |
| Secome                    | 20     | 30                  | 40                  | 20      | 100   | lune              | China                    |
| Sunflower                 | 20     | 35                  | 40                  | 20      | 130   | April/May         | Medit · Calif            |
| i Cereals                 | 25     | 33                  | 45                  | 25      | 150   | Артилиау          | Weatt., Call.            |
| 1. CCI Cais               | 15     | 25                  | 50                  | 30      | 120   | November          | Central India            |
|                           | 20     | 25                  | 60                  | 30      | 135   | March/Apr         | 35-45 °I                 |
| Barley/Oats/              | 15     | 30                  | 65                  | 40      | 150   |                   | East Africa              |
| Wheat                     | 40     | 30                  | 40                  | 20      | 130   | Δnr               | Edst Amed                |
| Wheat                     | 40     | 60                  | 60                  | 40      | 200   | Nov               |                          |
|                           | 20     | 50                  | 60                  | 30      | 160   | Dec               | Calif Desert USA         |
|                           | 20     | 60                  | 70                  | 30      | 180   | December          |                          |
| Winter Wheat <sup>2</sup> | 30     | 140                 | 40                  | 30      | 240   | November          | Mediterranean            |
| white wheat               | 160    | 75                  | 75                  | 25      | 240   | October           |                          |
|                           | 20     | 30                  | 60                  | 40      | 150   | Anril             | Mediterranean            |
| Grains (small)            | 25     | 35                  | 65                  | 40      | 165   | Oct/Nov           | Pakistan: Arid Reg       |
|                           | 30     | 50                  | 60                  | 40      | 180   | Anril             | East Africa (alt )       |
|                           | 25     | 40                  | 45                  | 30      | 140   | Dec/lan           | Arid Climate             |
|                           | 20     | 35                  | 40                  | 30      | 125   | lune              | Nigeria (humid)          |
| Maize (grain)             | 20     | 35                  | 40                  | 30      | 125   | October           |                          |
|                           | 30     | 40                  | 50                  | 30      | 120   | April             | Spain (spr. sum.): Calif |
|                           | 30     | 40                  | 50                  | 50      | 170   | April             |                          |
|                           | 20     | 20                  | 30                  | 10      | 80    | March             | Philippines              |
|                           | 20     | 20                  | 25                  | 10      | 80    | May/June          | Mediterranean            |
| Maiza (sweet)             | 20     | 20                  | 50/20               | 10      | 00    |                   | Arid Climato             |
| waize (sweet)             | 20     | 20                  | 20                  | 103     | 110   | April             |                          |
|                           | 20     | 40                  | 70                  | 10      | 140   |                   | Calif. Desert. USA       |
|                           | 15     | 25                  | 10                  | 25      | 140   | Juno              | Pakistan                 |
| Millet                    | 20     | 20                  | 40                  | 25      | 140   | April             | Control LISA             |
|                           | 20     | 25                  | 35                  | 20      | 120   | April<br>May/Juna |                          |
| Sorghum                   | 20     | 35                  | 40                  | 30      | 140   |                   | Arid Pagion              |
|                           | 20     | 35                  | 45                  | 30      | 150   |                   |                          |
| Rice                      | 30     | 30                  | 60                  | 30      | 150   | рес; мау          | Tropics; wiediter.       |
|                           | 30     | 30                  | 80                  | 40      | 180   | May               | Iropics                  |

<sup>&</sup>lt;sup>2</sup> These periods for winter wheat will lengthen in frozen climates according to days having zero growth potential and wheat dormancy. Under general conditions and in the absence of local data, fall planting of winter wheat can be presumed to occur in northern temperate climates when the 10-day running average of mean daily air temperature decreases to 17° C or December 1, whichever comes first. Planting of spring wheat can be presumed to occur when the 10-day running average of mean daily air temperature increases to 5° C. Spring planting of maize-grain can be presumed to occur when the 10-day running average of mean daily air temperature increases to 13° C.

<sup>&</sup>lt;sup>3</sup> The late season for sweet maize will be about 35 days if the grain is allowed to mature and dry.

TABLE A1. Continued.

| Сгор                                               | Init.               | Dev.                | Mid                 | Late                 | Total        | Plant Date              | Region                      |
|----------------------------------------------------|---------------------|---------------------|---------------------|----------------------|--------------|-------------------------|-----------------------------|
|                                                    | (L <sub>ini</sub> ) | (L <sub>dev</sub> ) | (L <sub>mid</sub> ) | (L <sub>late</sub> ) |              |                         |                             |
| j. Forages                                         |                     |                     |                     |                      |              |                         |                             |
| Alfalfa <sup>4</sup> , total season                | 10                  | 30                  | var.                | var.                 | var.         |                         | last -4°C in spring until   |
|                                                    | 10                  | 20                  | 20                  | 10                   | <u> </u>     | lava Avan (la at        |                             |
| Alfalfa <sup>4</sup> 1 <sup>st</sup> cutting cycle | 10                  | 20                  | 20                  | 10                   | 60           | Jan Apr (last -<br>4°C) | Calif., USA.                |
|                                                    | 10                  | 30                  | 25                  | 10                   | 75           |                         | Idaho, USA.                 |
| Alfalfa⁴, other cutting                            | 5                   | 10                  | 10                  | 5                    | 30           | Mar                     | Calif., USA.                |
| cycles                                             | 5                   | 20                  | 10                  | 10                   | 45           | Jun                     | Idaho, USA.                 |
| Bermuda for seed                                   | 10                  | 25                  | 35                  | 35                   | 105          | March                   | Calif. Desert, USA          |
| Bermuda for hay<br>(several cuttings)              | 10                  | 15                  | 75                  | 35                   | 135          |                         | Calif. Desert, USA          |
| Grass Pasture <sup>4</sup>                         | 10                  | 20                  |                     |                      |              |                         |                             |
| Sudan, 1 <sup>st</sup> cutting cycle               | 25                  | 25                  | 15                  | 10                   | 75           | Anr                     | Calif Desert USA            |
| Sudan, other cutting                               | 3                   | 15                  | 12                  | 7                    | 37           | lune                    | Calif. Desert, USA          |
| cvcles                                             | 5                   | 10                  |                     | ,                    | 57           | June                    |                             |
| k. Sugar Cane                                      |                     |                     |                     |                      |              |                         |                             |
|                                                    | 35                  | 60                  | 190                 | 120                  | 405          |                         | Low Latitudes               |
| Sugarcane, virgin                                  | 50                  | 70                  | 220                 | 140                  | 480          |                         | Tropics                     |
|                                                    | 75                  | 105                 | 330                 | 210                  | 720          |                         | Hawaii, USA                 |
|                                                    | 25                  | 70                  | 135                 | 50                   | 280          |                         | Low Latitudes               |
| Sugarcane, ratoon                                  | 30                  | 50                  | 180                 | 60                   | 320          |                         | Tropics                     |
|                                                    | 35                  | 105                 | 210                 | 70                   | 420          |                         | Hawaii, USA                 |
| I. Tropical Fruits and Tree                        | s                   |                     |                     |                      |              |                         | `                           |
| Banana, 1 <sup>st</sup> yr                         | 120                 | 90                  | 120                 | 60                   | 390          | Mar                     | Mediterranean               |
| Banana, 2 <sup>nd</sup> yr                         | 120                 | 60                  | 180                 | 5                    | 365          | Feb                     | Mediterranean               |
| Pineapple                                          | 60                  | 120                 | 600                 | 10                   | 790          |                         | Hawaii, USA                 |
| m. Grapes and Berries                              |                     |                     |                     |                      |              |                         |                             |
|                                                    | 20                  | 40                  | 120                 | 60                   | 240          | April                   | Low Latitudes               |
| Cronos                                             | 20                  | 50                  | 75                  | 60                   | 205          | Mar                     | Calif., USA                 |
| Grapes                                             | 20                  | 50                  | 90                  | 20                   | 180          | May                     | High Latitudes              |
|                                                    | 30                  | 60                  | 40                  | 80                   | 210          | April                   | Mid Latitudes (wine)        |
| Hops                                               | 25                  | 40                  | 80                  | 10                   | 155          | April                   | Idaho, USA                  |
| n. Fruit Trees                                     |                     |                     |                     |                      |              |                         |                             |
| Citrus                                             | 60                  | 90                  | 120                 | 95                   | 365          | Jan                     | Mediterranean               |
| Desiduous                                          | 20                  | 70                  | 90                  | 30                   | 210          | March                   | High Latitudes              |
| Orchard                                            | 20                  | 70                  | 120                 | 60                   | 270          | March                   | Low Latitudes               |
| Orchard                                            | 30                  | 50                  | 130                 | 30                   | 240          | March                   | Calif., USA                 |
| Olives                                             | 30                  | 90                  | 60                  | 90                   | <b>270</b> ⁵ | March                   | Mediterranean               |
| Pistachios                                         | 20                  | 60                  | 30                  | 40                   | 150          | Feb                     | Mediterranean               |
| Walnuts                                            | 20                  | 10                  | 130                 | 30                   | 190          | April                   | Utah, USA                   |
| o. Wetlands - Temperate                            | Climate             |                     |                     |                      |              |                         |                             |
| Wetlands (Cattails,                                | 10                  | 30                  | 80                  | 20                   | 140          | May                     | Utah, USA; killing<br>frost |
| Bulrush)                                           | 180                 | 60                  | 90                  | 35                   | 365          | November                | Florida, USA                |
| Wetlands (short veg.)                              | 180                 | 60                  | 90                  | 35                   | 365          | November                | frost-free climate          |

<sup>&</sup>lt;sup>4</sup> In climates having killing frosts, growing seasons can be estimated for alfalfa and grass as:

alfalfa: last -4° C in spring until first -4° C in fall (Everson, D. O., M. Faubion and D. E. Amos 1978. "Freezing temperatures and growing seasons in Idaho." Univ. Idaho Agric. Exp. station bulletin 494. 18 p.)

grass: 7 days before last -4° C in spring and 7 days after last -4° C in fall (Kruse E. G. and Haise, H. R. 1974. "Water use by native grasses in high altitude Colorado meadows." USDA Agric. Res. Service, Western Region report ARS-W-6-1974. 60 pages)

<sup>&</sup>lt;sup>5</sup> Olive trees gain new leaves in March. See footnote 24 of Table 12 for additional information, where the Kc continues outside of the "growing period"

#### **ANNEX 2. Crop coefficients**

c. Vegetables - Cucumber Family (Cucurbitaceae)

Cantaloupe

Cucumber

- Fresh Market

Pumpkin, Winter Squash

Squash, Zucchini

Sweet Melons

Watermelon

- Machine harvest

Crop coefficient (K<sub>c</sub>) varies during the growing period with changes in vegetation and ground cover. The trends in K<sub>c</sub> during the growing period are represented in the crop coefficient curve. To construct the crop coefficient curve, only three values for K<sub>c</sub> are required: initial stage (K<sub>cini</sub>), mid-season stage (K<sub>cmid</sub>) and end of the late-season stage (K<sub>cend</sub>). In Table A2 are given typical values for K<sub>c</sub> ini, K<sub>cmid</sub>, and K<sub>cend</sub> for various crops. The values of crop coefficients are presented taking into consideration specific crop group types (i.e., small vegetables, berries, cereals, etc.). There is usually close similarity in the coefficients among the members of the same crop group. K<sub>c</sub> values in Table 2 take into account both transpiration and evaporation over time. The values for K<sub>c</sub> during the initial and crop development stages vary a lot depending on local conditions and refinements to the value used for K<sub>c ini</sub> should always be made. More accurate estimates of K<sub>c ini</sub> can be obtained considering the time interval between wetting events, evaporation power of the surface, the magnitude of wetting events, and the time interval between wetting events. The values for K<sub>c mid</sub> and K<sub>c end</sub> represent values for a sub-humid climate with an average daytime minimum relative humidity (RH<sub>min</sub>) of about 45% and with calm to moderate wind speeds averaging 2 m/s. The given K<sub>c</sub> values in Table 2 are values for non-stressed crops cultivated under excellent agronomic and water management conditions and achieving maximum crop yield.

| from FAO IDP 56 (Allen et al., 1998)        |                          |                    |                    |                         |  |  |
|---------------------------------------------|--------------------------|--------------------|--------------------|-------------------------|--|--|
| Сгор                                        | K <sub>c,initial</sub> 6 | K <sub>c mid</sub> | K <sub>c end</sub> | Maximum crop height (m) |  |  |
| a. Small Vegetables                         | 0.7                      | 1.05               | 0.95               |                         |  |  |
| Broccoli                                    |                          | 1.05               | 0.95               | 0.3                     |  |  |
| Brussel Sprouts                             |                          | 1.05               | 0.95               | 0.4                     |  |  |
| Cabbage                                     |                          | 1.05               | 0.95               | 0.4                     |  |  |
| Carrots                                     |                          | 1.05               | 0.95               | 0.3                     |  |  |
| Cauliflower                                 |                          | 1.05               | 0.95               | 0.4                     |  |  |
| Celery                                      |                          | 1.05               | 1                  | 0.6                     |  |  |
| Garlic                                      |                          | 1                  | 0.7                | 0.3                     |  |  |
| Lettuce                                     |                          | 1                  | 0.95               | 0.3                     |  |  |
| Onions                                      |                          |                    |                    |                         |  |  |
| - dry                                       |                          | 1.05               | 0.75               | 0.4                     |  |  |
| - green                                     |                          | 1                  | 1                  | 0.3                     |  |  |
| - seed                                      |                          | 1.05               | 0.8                | 0.5                     |  |  |
| Spinach                                     |                          | 1                  | 0.95               | 0.3                     |  |  |
| Radish                                      |                          | 0.9                | 0.85               | 0.3                     |  |  |
| b. Vegetables - Solanum Family (Solanaceae) | 0.6                      | 1.15               | 0.8                |                         |  |  |
| Egg Plant                                   |                          | 1.05               | 0.9                | 0.8                     |  |  |
| Sweet Peppers (bell)                        |                          | 1.057              | 0.9                | 0.7                     |  |  |
| Tomato                                      |                          | 1.05 <sup>7</sup>  | 0.70-0.90          | 0.6                     |  |  |

0.5

0.5

0.6

0.5

0.4

1

0.85

1.007

1

1

0.95

1.05

1

0.8

0.6

0.75

0.9

0.8

0.75

0.75

0.75

0.3

0.3

0.3

0.4

0.3

0.4 0.4

| TABLE A2. Single (time-averaged) crop coefficients, K <sub>c</sub> , and mean maximum plant heights for non stressed, we               | 11- |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|
| managed crops in subhumid climates (RH <sub>min</sub> » 45%, u <sub>2</sub> » 2 m/s) for use with the FAO Penman-Monteith ETo. Adopted | ed  |
| from FAO IDP 56 (Allen et al., 1998)                                                                                                   |     |

 $<sup>^{6}</sup>$  These are general values for K<sub>c</sub> ini under typical irrigation management and soil wetting. For frequent wettings such as with high frequency sprinkle irrigation or daily rainfall, these values may increase substantially and may approach 1.0 to 1.2. K<sub>c</sub> ini is a function of wetting interval and potential evaporation rate during the initial and development periods and is more accurately estimated using the dual K<sub>cb</sub> ini + K<sub>e</sub>.

<sup>&</sup>lt;sup>7</sup> Beans, Peas, Legumes, Tomatoes, Peppers and Cucumbers are sometimes grown on stalks reaching 1.5 to 2 meters in height. In such cases, increased Kc values need to be taken. For green beans, peppers and cucumbers, 1.15 can be taken, and for tomatoes, dry beans and peas, 1.20. Under these conditions h should be increased also.

#### TABLE A2. Continued

| Сгор                          | K <sub>c,initial</sub> <sup>8</sup> | K <sub>c mid</sub>     | K <sub>c end</sub> | Maximum crop height (m) |
|-------------------------------|-------------------------------------|------------------------|--------------------|-------------------------|
| d. Roots and Tubers           | 0.5                                 | 1.1                    | 0.95               |                         |
| Beets, table                  |                                     | 1.05                   | 0.95               | 0.4                     |
| Cassava                       |                                     |                        |                    |                         |
| - year 1                      | 0.3                                 | 0.80 <sup>9</sup>      | 0.3                | 1                       |
| - year 2                      | 0.3                                 | 1.1                    | 0.5                | 1.5                     |
| Parsnip                       | 0.5                                 | 1.05                   | 0.95               | 0.4                     |
| Potato                        |                                     | 1.15                   | 0.75 <sup>10</sup> | 0.6                     |
| Sweet Potato                  |                                     | 1.15                   | 0.65               | 0.4                     |
| Turnip (and Rutabaga)         |                                     | 1.1                    | 0.95               | 0.6                     |
| Sugar Beet                    | 0.35                                | 1.2                    | 0.7011             | 0.5                     |
| e. Legumes (Leguminosae)      | 0.4                                 | 1.15                   | 0.55               |                         |
| Beans, green                  | 0.5                                 | 1.05 <sup>7</sup>      | 0.9                | 0.4                     |
| Beans, dry and Pulses         | 0.4                                 | 1.057                  | 0.35               | 0.4                     |
| Chick pea                     |                                     | 1                      | 0.35               | 0.4                     |
| Faba bean (broad bean)        |                                     |                        |                    |                         |
| - Fresh                       | 0.5                                 | 1.157                  | 1.1                | 0.8                     |
| - Dry/Seed                    | 0.5                                 | 1.157                  | 0.3                | 0.8                     |
| Grabanzo                      | 0.4                                 | 1.15                   | 0.35               | 0.8                     |
| Green Gram and Cowpeas        |                                     | 1.05                   | 0.60-0.3512        | 0.4                     |
| Groundnut (Peanut)            |                                     | 1.15                   | 0.6                | 0.4                     |
| Lentil                        |                                     | 1.1                    | 0.3                | 0.5                     |
| Peas                          |                                     |                        |                    |                         |
| - Fresh                       | 0.5                                 | 1.157                  | 1.1                | 0.5                     |
| - Dry/Seed                    |                                     | 1.15                   | 0.3                | 0.5                     |
| Soybeans                      |                                     | 1.15                   | 0.5                | 0.5-1.0                 |
| f. Perennial Vegetables       | 0.5                                 | 1                      | 0.8                |                         |
| Artichokes                    | 0.5                                 | 1                      | 0.95               | 0.7                     |
| Asparagus                     | 0.5                                 | 0.9513                 | 0.3                | 0.2-0.8                 |
| Mint                          | 0.6                                 | 1.15                   | 1.1                | 0.6-0.8                 |
| Strawberries                  | 0.4                                 | 0.85                   | 0.75               | 0.2                     |
| g. Fibre Crops                | 0.35                                |                        |                    |                         |
| Cotton                        |                                     | 1.15-1.20              | 0.70-0.50          | 1.2-1.5                 |
| Flax                          |                                     | 1.1                    | 0.25               | 1.2                     |
| Sisal <sup>14</sup>           |                                     | 0.4-0.7                | 0.4-0.7            | 1.5                     |
| h. Oil Crops                  | 0.35                                | 1.15                   | 0.35               |                         |
| Castorbean ( <i>Ricinus</i> ) |                                     | 1.15                   | 0.55               | 0.3                     |
| Rapeseed, Canola              |                                     | 1.0-1.1515             | 0.35               | 0.6                     |
| Safflower                     |                                     | 1.0-1.1514             | 0.25               | 0.8                     |
| Sesame                        |                                     | 1.1                    | 0.25               | 1                       |
| Sunflower                     |                                     | 1.0-1.15 <sup>14</sup> | 0.35               | 2                       |

<sup>&</sup>lt;sup>8</sup> These are general values for  $K_{c ini}$  under typical irrigation management and soil wetting. For frequent wettings such as with high frequency sprinkle irrigation or daily rainfall, these values may increase substantially and may approach 1.0 to 1.2.  $K_{c ini}$  is a function of wetting interval and potential evaporation rate during the initial and development periods and is more accurately estimated using the dual  $K_{cb ini} + K_{e}$ .

<sup>&</sup>lt;sup>9</sup> The midseason values for cassava assume non-stressed conditions during or following the rainy season. The K<sub>c end</sub> values account for dormancy during the dry season.

 $<sup>^{10}</sup>$  The  $K_{c\,end}$  value for potatoes is about 0.40 for long season potatoes with vine kill.

<sup>&</sup>lt;sup>11</sup> This  $K_{c end}$  value is for no irrigation during the last month of the growing season. The  $K_{c end}$  value for sugar beets is higher, up to 1.0, when irrigation or significant rain occurs during the last month.

 $<sup>^{\</sup>rm 12}$  The first  $K_{c\,end}$  is for harvested fresh. The second value is for harvested dry.

 $<sup>^{13}</sup>$  The K<sub>c</sub> for asparagus usually remains at K<sub>c ini</sub> during harvest of the spears, due to sparse ground cover. The K<sub>c mid</sub> value is for following regrowth of plant vegetation following termination of harvest of spears.

 $<sup>^{\</sup>rm 14}\,K_c$  for sisal depends on the planting density and water management

<sup>&</sup>lt;sup>15</sup> The lower values are for rainfed crops having less dense plant populations.

| TABLE A2. Contin | ued. |
|------------------|------|
|------------------|------|

| Сгор                                           | K <sub>c,initial</sub> 6 | K <sub>c mid</sub> | K <sub>c end</sub>      | Maximum crop |
|------------------------------------------------|--------------------------|--------------------|-------------------------|--------------|
| i Cereals                                      | 0.3                      | 1 15               | 0.4                     | neight (m)   |
| Barlov                                         | 0.5                      | 1.15               | 0.4                     | 1            |
| Oate                                           |                          | 1.15               | 0.25                    | 1            |
| Spring Wheat                                   |                          | 1.15               | 0.25                    | 1            |
| Winter Wheat                                   |                          | 1.15               | 0.25-0.4                | 1            |
| - with frozen soils                            | 0.4                      | 1 15               | 0 25-0 415              | 1            |
| - with non-frozen soils                        | 0.7                      | 1.15               | 0.25-0.415              | ±            |
| Maize Field (grain) <i>(field corn)</i>        | 0.7                      | 1.15               | 0.60-0.35 <sup>17</sup> | 2            |
| Maize, Sweet (sweet corn)                      |                          | 1 15               | 1 05 <sup>18</sup>      | 15           |
| Millet                                         |                          | 1                  | 0.3                     | 1 5          |
| Sorghum                                        |                          |                    | 0.0                     | 1.5          |
| - grain                                        |                          | 1.00-1.10          | 0.55                    | 1-2          |
| - sweet                                        |                          | 1.2                | 1.05                    | 2-4          |
| Rice                                           | 1.05                     | 1.2                | 0.90-0.60               | 1            |
| j. Forages                                     |                          |                    |                         |              |
| Alfalfa Hay                                    |                          |                    |                         |              |
| - averaged cutting effects                     | 0.4                      | 0.95 <sup>19</sup> | 0.9                     | 0.7          |
| - individual cutting periods                   | 0.40 <sup>20</sup>       | 1.20 <sup>19</sup> | 1.15 <sup>19</sup>      | 0.7          |
| - for seed                                     | 0.4                      | 0.5                | 0.5                     | 0.7          |
| Bermuda hay                                    |                          |                    |                         |              |
| <ul> <li>averaged cutting effects</li> </ul>   | 0.55                     | 1.0018             | 0.85                    | 0.35         |
| - Spring crop for seed                         | 0.35                     | 0.9                | 0.65                    | 0.4          |
| Clover hay, Berseem                            |                          |                    |                         |              |
| <ul> <li>averaged cutting effects</li> </ul>   | 0.4                      | 0.9018             | 0.85                    | 0.6          |
| <ul> <li>individual cutting periods</li> </ul> | 0.4019                   | 1.15 <sup>19</sup> | 1.10 <sup>19</sup>      | 0.6          |
| Rye Grass hay                                  |                          |                    |                         |              |
| <ul> <li>averaged cutting effects</li> </ul>   | 0.95                     | 1.05               | 1                       | 0.3          |
| Sudan Grass hay (annual)                       |                          |                    |                         |              |
| <ul> <li>averaged cutting effects</li> </ul>   | 0.5                      | 0.90 <sup>19</sup> | 0.85                    | 1.2          |
| <ul> <li>individual cutting periods</li> </ul> | 0.50 <sup>19</sup>       | 1.15 <sup>19</sup> | 1.10 <sup>19</sup>      | 1.2          |
| Grazing Pasture                                |                          |                    |                         |              |
| - Rotated Grazing                              | 0.4                      | 0.85-1.05          | 0.85                    | 0.15-0.30    |
| - Extensive Grazing                            | 0.3                      | 0.75               | 0.75                    | 0.1          |
| Turf grass                                     |                          |                    |                         |              |
| - cool season <sup>21</sup>                    | 0.90                     | 0.95               | 0.95                    | 0.1          |
| - warm season <sup>20</sup>                    | 0.80                     | 0.85               | 0.85                    | 0.1          |
| k. Sugar Cane                                  | 0.4                      | 1.25               | 0.75                    | 3            |

<sup>&</sup>lt;sup>16</sup> The higher value is for hand-harvested crops.

<sup>&</sup>lt;sup>17</sup> The first  $K_{c end}$  value is for harvest at high grain moisture. The second  $K_{c end}$  value is for harvest after complete field drying of the grain (to about 18% moisture, wet mass basis).

 $<sup>^{18}</sup>$  If harvested fresh for human consumption. Use K<sub>c end</sub> for field maize if the sweet maize is allowed to mature and dry in the field.

<sup>&</sup>lt;sup>19</sup> This  $K_{c mid}$  coefficient for hay crops is an overall average  $K_{c mid}$  coefficient that averages  $K_c$  for both before and following cuttings. It is applied to the period following the first development period until the beginning of the last late season period of the growing season.

<sup>&</sup>lt;sup>20</sup> These K<sub>c</sub> coefficients for hay crops represent immediately following cutting; at full cover; and immediately before cutting, respectively. The growing season is described as a series of individual cutting periods.

<sup>&</sup>lt;sup>21</sup> Cool season grass varieties include dense stands of bluegrass, ryegrass, and fescue. Warm season varieties include bermuda grass and St. Augustine grass. The 0.95 values for cool season grass represent a 0.06 to 0.08 m mowing height under general turf conditions. Where careful water management is practiced and rapid growth is not required, K<sub>c's</sub> for turf can be reduced by 0.10.

#### TABLE A2. Continued.

| Сгор                                 | K <sub>c,initial</sub> 6 | K <sub>c mid</sub> | K <sub>c end</sub> | Maximum crop height (m) |
|--------------------------------------|--------------------------|--------------------|--------------------|-------------------------|
|                                      |                          |                    |                    |                         |
| I. Tropical Fruits and Trees         |                          |                    |                    |                         |
| Banana                               |                          |                    |                    |                         |
| - 1 <sup>st</sup> year               | 0.5                      | 1.1                | 1                  | 3                       |
| - 2 <sup>nd</sup> year               | 1                        | 1.2                | 1.1                | 4                       |
| Сасао                                | 1                        | 1.05               | 1.05               | 3                       |
| Coffee                               |                          |                    |                    |                         |
| - bare ground cover                  | 0.9                      | 0.95               | 0.95               | 2-3                     |
| - with weeds                         | 1.05                     | 1.1                | 1.1                | 2-3                     |
| Date Palms                           | 0.9                      | 0.95               | 0.95               | 8                       |
| Palm Trees                           | 0.95                     | 1                  | 1                  | 8                       |
| Pineapple <sup>22</sup>              |                          |                    |                    |                         |
| - bare soil                          | 0.5                      | 0.3                | 0.3                | 0.6-1.2                 |
| <ul> <li>with grass cover</li> </ul> | 0.5                      | 0.5                | 0.5                | 0.6-1.2                 |
| Rubber Trees                         | 0.95                     | 1                  | 1                  | 10                      |
| Теа                                  |                          |                    |                    |                         |
| - non-shaded                         | 0.95                     | 1                  | 1                  | 1.5                     |
| - shaded <sup>23</sup>               | 1.10                     | 1.15               | 1.15               | 2                       |
| m. Grapes and Berries                |                          |                    |                    |                         |
| Berries (bushes)                     | 0.3                      | 1.05               | 0.5                | 1.5                     |
| Grapes                               |                          |                    |                    |                         |
| - Table or Raisin                    | 0.3                      | 0.85               | 0.45               | 2                       |
| - Wine                               | 0.3                      | 0.7                | 0.45               | 1.5-2                   |
| Hops                                 | 0.3                      | 1.05               | 0.85               | 5                       |

<sup>&</sup>lt;sup>22</sup> The pineapple plant has very low transpiration because it closes its stomates during the day and opens them during the night. Therefore, the majority of  $ET_c$  from pineapple is evaporation from the soil. The  $K_c \text{ mid} < K_c \text{ ini}$  since  $K_c \text{ mid}$  occurs during full ground cover so that soil evaporation is less. Values given assume that 50% of the ground surface is covered by black plastic mulch and that irrigation is by sprinkler. For drip irrigation beneath the plastic mulch,  $K_{c's}$  given can be reduced by 0.10.

<sup>&</sup>lt;sup>23</sup> Includes the water requirements of the shaded trees.

| TABLE A2. Continued                                        |                          |                    |                    |                         |
|------------------------------------------------------------|--------------------------|--------------------|--------------------|-------------------------|
| Сгор                                                       | K <sub>c,initial</sub> 6 | K <sub>c mid</sub> | K <sub>c end</sub> | Maximum crop height (m) |
| n. Fruit Trees                                             |                          |                    |                    |                         |
| Almonds, no ground cover                                   | 0.4                      | 0.9                | 0.65 <sup>24</sup> | 5                       |
| Apples, Cherries, Pears <sup>25</sup>                      |                          |                    |                    |                         |
| - no ground cover, killing frost                           | 0.45                     | 0.95               | 0.70 <sup>23</sup> | 4                       |
| - no ground cover, no frosts                               | 0.6                      | 0.95               | 0.75 <sup>23</sup> | 4                       |
| - active ground cover, killing frost                       | 0.5                      | 1.2                | 0.95 <sup>23</sup> | 4                       |
| - active ground cover, no frosts                           | 0.8                      | 1.2                | 0.85 <sup>23</sup> | 4                       |
| Apricots, Peaches, Stone Fruit <sup>24, 26</sup>           |                          |                    |                    |                         |
| - no ground cover, killing frost                           | 0.45                     | 0.9                | 0.65 <sup>23</sup> | 3                       |
| - no ground cover, no frosts                               | 0.55                     | 0.9                | 0.65 <sup>23</sup> | 3                       |
| - active ground cover, killing frost                       | 0.5                      | 1.15               | 0.90 <sup>23</sup> | 3                       |
| - active ground cover, no frosts                           | 0.8                      | 1.15               | 0.85 <sup>23</sup> | 3                       |
| Avocado, no ground cover                                   | 0.6                      | 0.85               | 0.75               | 3                       |
| Citrus, no ground cover <sup>27</sup>                      |                          |                    |                    |                         |
| - 70% canopy                                               | 0.70                     | 0.65               | 0.7                | 4                       |
| - 50% canopy                                               | 0.65                     | 0.6                | 0.65               | 3                       |
| - 20% canopy                                               | 0.50                     | 0.45               | 0.55               | 2                       |
| Citrus, with active ground cover or weeds <sup>28</sup>    |                          |                    |                    |                         |
| - 70% canopy                                               | 0.75                     | 0.7                | 0.75               | 4                       |
| - 50% canopy                                               | 0.80                     | 0.8                | 0.8                | 3                       |
| - 20% canopy                                               | 0.85                     | 0.85               | 0.85               | 2                       |
| Conifer Trees <sup>29</sup>                                | 1                        | 1                  | 1                  | 10                      |
| Kiwi                                                       | 0.4                      | 1.05               | 1.05               | 3                       |
| Olives (40 to 60% ground coverage by canopy) <sup>30</sup> | 0.65                     | 0.7                | 0.7                | 3-5                     |
| Pistachios, no ground cover                                | 0.4                      | 1.1                | 0.45               | 3-5                     |
| Walnut Orchard <sup>24</sup>                               | 0.5                      | 1.1                | 0.65 <sup>23</sup> | 3-5                     |
| o. Wetlands - temperate climate                            |                          |                    |                    |                         |
| Cattails, Bulrushes, killing frost                         | 0.3                      | 1.2                | 0.3                | 2                       |
| Cattails, Bulrushes, no frost                              | 0.6                      | 1.2                | 0.6                | 2                       |
| Short Veg., no frost                                       | 1.05                     | 1.1                | 1.1                | 0.3                     |
| Reed Swamp, standing water                                 | 1                        | 1.2                | 1                  | 1-3                     |
| Reed Swamp, moist soil                                     | 0.9                      | 1.2                | 0.7                | 1-3                     |
| p. Special                                                 |                          |                    |                    |                         |
| Open Water, < 2 m depth or in subhumid climates            |                          | 1.05               | 1.05               |                         |
| or tropics                                                 |                          | 0.6-31             | 4 0=30             |                         |
| Open Water, > 5 m depth, clear of turbidity,               |                          | 0.65°1             | 1.2550             |                         |

<sup>&</sup>lt;sup>24</sup> These K<sub>c</sub> end values represent K<sub>c</sub> prior to leaf drop. After leaf drop, K<sub>c end</sub>  $\approx$  0.20 for bare, dry soil or dead ground cover and K<sub>c end</sub>  $\approx$  0.50 to 0.80 for actively growing ground cover.

 $<sup>^{25}</sup>$  Refer to Eq. 94, 97 or 98 and footnotes 21 and 22 for estimating K<sub>c</sub> for immature stands.

<sup>&</sup>lt;sup>26</sup> Stone fruit category applies to peaches, apricots, pears, plums and pecans.

 $<sup>^{27}</sup>$  The values listed correspond with those in Doorenbos and Pruitt (1977) and with more recent measurements. The midseason value is lower than initial and ending values due to the effects of stomatal closure during periods of peak ET. For humid and subhumid climates where there is less stomatal control by citrus, values for K<sub>c ini</sub>, K<sub>c mid</sub>, and K<sub>c end</sub> can be increased by 0.1 - 0.2.

<sup>&</sup>lt;sup>28</sup> The values listed correspond with those in Doorenbos and Pruitt (1977) and with more recent measurements. For humid and subhumid climates where there is less stomatal control by citrus, values for K<sub>c ini</sub>, K<sub>c mid</sub>, and K<sub>c end</sub> can be increased by 0.1 - 0.2.

<sup>&</sup>lt;sup>29</sup> Confers exhibit substantial stomatal control due to reduced aerodynamic resistance. The K<sub>c</sub> can easily reduce below the values presented, which represent well-watered conditions for large forests.

 $<sup>^{\</sup>rm 30}$  These coefficients represent about 40 to 60% ground cover.

 $<sup>^{31}</sup>$  These Kc's are for deep water in temperate latitudes where large temperature changes in the water body occur during the year, and initial and peak period evaporation is low as radiation energy is absorbed into the deep water body. During fall and winter periods (Kc end), heat is released from the water body that increases the evaporation above that for grass. Therefore, Kc <sub>mid</sub> corresponds to the period when the water body is gaining thermal energy and Kc end when releasing thermal energy. These Kc's should be used with caution.

#### ANNEX 3 - Maximum root depth and depletion fraction

Total available water in the root zone is the difference between the water content at field capacity and wilting point, but no matter of previous soil water characteristics, the amount of available water depends on rooting depth or maximum soil depth which allows crops to normally develop their rooting system. The higher the rooting depth, the higher is total available water. Ranges of the maximum effective rooting depth for various crops are given in Table A3. The fraction of total available water that a crop can extract from the root zone without suffering water stress is readily available soil water. Readily available is a crop-specific characteristic, as various crops have different possibilities to extract water from the soil. This crop-specific parameter is called depletion fraction and is marked as p. Values for p are listed in Table A3 and they differ from one crop to another. Depletion fraction is a function of the evaporation power of the atmosphere. At low rates of ET<sub>c</sub>, the p values listed in Table A3 are higher than at high rates of ET<sub>c</sub>. Often, a constant value is used for p for a specific growing period, rather than varying the value each day.

| Сгор                     | Maximum Root Depth <sup>32</sup> (m) | Depletion Fraction | on³³ (for ET ≈ 5 mm/day) (p) |  |  |
|--------------------------|--------------------------------------|--------------------|------------------------------|--|--|
| a. Small Vegetables      |                                      |                    |                              |  |  |
| Broccoli                 | 0.4-0.6                              | 0.45               |                              |  |  |
| Brussel Sprouts          | 0.4-0.6                              |                    | 0.45                         |  |  |
| Cabbage                  | 0.5-0.8                              |                    | 0.45                         |  |  |
| Carrots                  | 0.5-1.0                              |                    | 0.35                         |  |  |
| Cauliflower              | 0.4-0.7                              |                    | 0.45                         |  |  |
| Celery                   | 0.3-0.5                              |                    | 0.2                          |  |  |
| Garlic                   | 0.3-0.5                              |                    | 0.3                          |  |  |
| Lettuce                  | 0.3-0.5                              |                    | 0.3                          |  |  |
| Onions                   |                                      |                    |                              |  |  |
| - dry                    | 0.3-0.6                              | 0.3                |                              |  |  |
| - green                  | 0.3-0.6                              | 0.3                |                              |  |  |
| - seed                   | 0.3-0.6                              | 0.35               |                              |  |  |
| Spinach                  | 0.3-0.5                              | 0.2                |                              |  |  |
| Radishes                 | 0.3-0.5                              | 0.3                |                              |  |  |
| b. Vegetables - Solarium | Family <i>(Solanaceae)</i>           |                    |                              |  |  |
| Egg Plant                | 0.7-1.2                              |                    | 0.45                         |  |  |
| Sweet Peppers (bell)     | 0.5-1.0                              | 0.3                |                              |  |  |
| Tomato                   | 0.7-1.5                              |                    | 0.4                          |  |  |
| c. Vegetables - Cucumber | r Family ( <i>Cucurbitaceae</i> )    |                    |                              |  |  |
| Cantaloupe               |                                      | 0.9-1.5            | 0.45                         |  |  |
| Cucumber                 |                                      |                    |                              |  |  |
| - Fresh Market           |                                      | 0.7-1.2            | 0.5                          |  |  |
| - Machine harvest        |                                      | 0.7-1.2 0.5        |                              |  |  |
| Pumpkin, Winter Squash   |                                      | 1.0-1.5            | 0.35                         |  |  |
| Squash, Zucchini         |                                      | 0.6-1.0            | 0.5                          |  |  |
| Sweet Melons             |                                      | 0.8-1.5            | 0.4                          |  |  |
| Watermelon               |                                      | 0.8-1.5            | 0.4                          |  |  |

TABLE A3. Ranges of maximum effective rooting depth (Zr), and soil water depletion fraction for no stress (p), for common crops. Adopted from FAO IDP 56 (Allen et al., 1998)

 $<sup>^{32}</sup>$  The larger values for Z<sub>r</sub> are for soils having no significant layering or other characteristics that can restrict rooting depth. The smaller values for Z<sub>r</sub> may be used for irrigation scheduling and the larger values for modeling soil water stress or for rainfed conditions.

<sup>&</sup>lt;sup>33</sup> The values for p apply for ETc » 5 mm/day. The value for p can be adjusted for different ETc according to p = p table 22 + 0.04 (5 - ETc), where p is expressed as a fraction and ETc as mm/day.

#### TABLE A3. Continued.

| Сгор                                                | Maximum Root Depth <sup>31</sup> (m) | Depletion Fraction <sup>32</sup> (for |
|-----------------------------------------------------|--------------------------------------|---------------------------------------|
|                                                     |                                      | EI≈5mm/day)                           |
| d Boots and Tubers                                  |                                      | (Þ)                                   |
| Beets, table                                        | 0.6-1.0                              | 0.5                                   |
| Cassava                                             | 0.0 1.0                              | 0.5                                   |
| - vear 1                                            | 0.5-0.8                              | 0.35                                  |
| - vear 2                                            | 0.7-1.0                              | 0.4                                   |
| Parsnip                                             | 0.5-1.0                              | 0.4                                   |
| Potato                                              | 0.4-0.6                              | 0.35                                  |
| Sweet Potato                                        | 1.0-1.5                              | 0.65                                  |
| Turnip (and Rutabaga)                               | 0.5-1.0                              | 0.5                                   |
| Sugar Beet                                          | 0.7-1.2                              | 0.55 <sup>34</sup>                    |
| e. Legumes (Leguminosae)                            |                                      |                                       |
| Beans, green                                        | 0.5-0.7                              | 0.45                                  |
| Beans, dry and Pulses                               | 0.6-0.9                              | 0.45                                  |
| Beans, lima, large vines                            | 0.8-1.2                              | 0.45                                  |
| Chick pea                                           | 0.6-1.0                              | 0.5                                   |
| Fababean (broad bean)                               |                                      |                                       |
| - Fresh                                             | 0.5-0.7                              | 0.45                                  |
| - Dry/Seed                                          | 0.5-0.7                              | 0.45                                  |
| Grabanzo                                            | 0.6-1.0                              | 0.45                                  |
| Green Gram and Cowpeas                              | 0.6-1.0                              | 0.45                                  |
| Groundnut (Peanut)                                  | 0.5-1.0                              | 0.5                                   |
| Lentil                                              | 0.6-0.8                              | 0.5                                   |
| Peas                                                |                                      |                                       |
| - Fresh                                             | 0.6-1.0                              | 0.35                                  |
| - Dry/Seed                                          | 0.6-1.0                              | 0.4                                   |
| Soybeans                                            | 0.6-1.3                              | 0.5                                   |
| f. Perennial Vegetables (with winter dormancy and i | nitially bare or mulched soil)       |                                       |
| Artichokes                                          | 0.6-0.9                              | 0.45                                  |
| Asparagus                                           | 1.2-1.8                              | 0.45                                  |
| Mint                                                | 0.4-0.8                              | 0.4                                   |
| Strawberries                                        | 0.2-0.3                              | 0.2                                   |
| g. Fibre Crops                                      |                                      |                                       |
| Cotton                                              | 1.0-1.7                              | 0.65                                  |
| Flax                                                | 1.0-1.5                              | 0.5                                   |
| Sisal                                               | 0.5-1.0                              | 0.8                                   |
| h. Oil Crops                                        |                                      |                                       |
| Castorbean (Ricinus)                                | 1.0-2.0                              | 0.5                                   |
| Rapeseed, Canola                                    | 1.0-1.5                              | 0.6                                   |
| Safflower                                           | 1.0-2.0                              | 0.6                                   |
| Sesame                                              | 1.0-1.5                              | 0.6                                   |
| Sunflower                                           | 0.8-1.5                              | 0.45                                  |

 $<sup>^{34}</sup>$  Sugar beets often experience late afternoon wilting in arid climates even at p < 0.55, with usually only minor impact on sugar yield.

## TABLE A3. Continued

| TADLE AJ. CONTINUEU               |                                      |                                                                |
|-----------------------------------|--------------------------------------|----------------------------------------------------------------|
| Сгор                              | Maximum Root Depth <sup>31</sup> (m) | Depletion Fraction <sup>32</sup><br>(for ET ≈ 5 mm/day)<br>(p) |
| i. Cereals                        |                                      |                                                                |
| Barley                            | 1.0-1.5                              | 0.55                                                           |
| Oats                              | 1.0-1.5                              | 0.55                                                           |
| Spring Wheat                      | 1.0-1.5                              | 0.55                                                           |
| Winter Wheat                      | 1.5-1.8                              | 0.55                                                           |
| Maize, Field (grain) (field corn) | 1.0-1.7                              | 0.55                                                           |
| Maize, Sweet (sweet corn)         | 0.8-1.2                              | 0.5                                                            |
| Millet                            | 1.0-2.0                              | 0.55                                                           |
| Sorghum                           |                                      |                                                                |
| - grain                           | 1.0-2.0                              | 0.55                                                           |
| - sweet                           | 1.0-2.0                              | 0.5                                                            |
| Rice                              | 0.5-1.0                              | 0.2035                                                         |
| j. Forages                        |                                      |                                                                |
| Alfalfa                           |                                      |                                                                |
| - for hay                         | 1.0-2.0                              | 0.55                                                           |
| - for seed                        | 1.0-3.0                              | 0.6                                                            |
| Bermuda                           |                                      |                                                                |
| - for hay                         | 1.0-1.5                              | 0.55                                                           |
| - Spring crop for seed            | 1.0-1.5                              | 0.6                                                            |
| Clover hay, Berseem               | 0.6-0.9                              | 0.5                                                            |
| Rye Grass hay                     | 0.6-1.0                              | 0.6                                                            |
| Sudan Grass hay (annual)          | 1.0-1.5                              | 0.55                                                           |

 $<sup>^{\</sup>rm 35}$  The value for p for rice is 0.20 of saturation.

TABLE A3. Continued

| Сгор                                         | Maximum Root Depth <sup>31</sup> (m) | Depletion Fraction <sup>32</sup> |  |  |
|----------------------------------------------|--------------------------------------|----------------------------------|--|--|
|                                              |                                      | (for ET ≈ 5 mm/day)              |  |  |
| Curreius Destaure                            |                                      | (þ)                              |  |  |
| Grazing Pasture                              |                                      | 0.0                              |  |  |
| - Rotated Grazing                            | 0.5-1.5                              | 0.6                              |  |  |
|                                              | 0.5-1.5                              | 0.6                              |  |  |
| Turi grass                                   | 0510                                 | 0.4                              |  |  |
| - COOI SedSOII-0                             | 0.5-1.0                              | 0.4                              |  |  |
| - warm seasons                               | 1.2.2.0                              | 0.5                              |  |  |
| K. Sugar Cane                                | 1.2-2.0                              | 0.65                             |  |  |
| Panana                                       |                                      |                                  |  |  |
| Danana                                       | 0.5.0.0                              | 0.25                             |  |  |
|                                              | 0.5-0.9                              | 0.35                             |  |  |
|                                              | 0.5-0.9                              | 0.35                             |  |  |
|                                              | 0.7-1.0                              | 0.3                              |  |  |
| Corree                                       | 0.9-1.5                              | 0.4                              |  |  |
| Date Paims                                   | 1.5-2.5                              | 0.5                              |  |  |
| Paim Trees                                   | 0.7-1.1                              | 0.65                             |  |  |
| Pineappie                                    | 0.3-0.6                              | 0.5                              |  |  |
| Rubber Trees                                 | 1.0-1.5                              | 0.4                              |  |  |
| lea                                          | 0.0.4.5                              | <u></u>                          |  |  |
| - non-shaded                                 | 0.9-1.5                              | 0.4                              |  |  |
| - shaded                                     | 0.9-1.5                              | 0.45                             |  |  |
| m. Grapes and Berries                        | 0.0.4.0                              |                                  |  |  |
| Berries (bushes)                             | 0.6-1.2                              | 0.5                              |  |  |
| Grapes                                       |                                      |                                  |  |  |
| - Table or Raisin                            | 1.0-2.0                              | 0.35                             |  |  |
| - Wine                                       | 1.0-2.0 0.45                         |                                  |  |  |
| Hops                                         | 1.0-1.2                              | 0.5                              |  |  |
| n. Fruits Trees                              |                                      |                                  |  |  |
| Almonds                                      | 1.0-2.0                              | 0.4                              |  |  |
| Apples, Cherries, Pears                      | 1.0-2.0                              | 0.5                              |  |  |
| Apricots, Peaches, Stone Fruit               | 1.0-2.0                              | 0.5                              |  |  |
| Avocado                                      | 0.5-1.0                              | 0.7                              |  |  |
| Citrus 70% canopy                            | 1.2-1.5                              | 0.5                              |  |  |
| Citrus 50% canopy                            | 1.1-1.5                              | 0.5                              |  |  |
| Citrus 20% canopy                            | 0.8-1.1                              | 0.5                              |  |  |
| Conifer Trees                                | 1.0-1.5                              | 0.7                              |  |  |
| Kiwi                                         | 0.7-1.3                              | 0.35                             |  |  |
| Olives (40 to 60% ground coverage by canopy) | 1.2-1.7                              | 0.65                             |  |  |
| Pistachios                                   | 1.0-1.5                              | 0.4                              |  |  |
| Walnut Orchard                               | 1.7-2.4                              | 0.5                              |  |  |

<sup>&</sup>lt;sup>36</sup> Cool season grass varieties include bluegrass, ryegrass and fescue. Warm season varieties include bermuda grass, buffalo grass and St. Augustine grass. Grasses are variable in rooting depth. Some root below 1.2 m while others have shallow rooting depths. The deeper rooting depths for grasses represent conditions where careful water management is practiced with higher depletion between irrigations to encourage the deeper root exploration.

#### ANNEX 4 - Salt tolerance of crops

Under optimum management, in saline conditions, crop yields remain at potential levels, until a specific, threshold electrical conductivity of the saturation soil water extract ( $EC_{e threshold}$ ) is reached. If the average  $EC_{e}$  of the root zone increases above this critical threshold value, the yield is presumed to begin to decrease linearly in proportion to the increase in salinity. The rate of decrease in yield with an increase in salinity is usually expressed as a slope, b, having units of % reduction in yield per dS/m increase in EC<sub>e</sub>. Salt tolerance for many crops is provided in the FAO Irrigation and Drainage Papers No. 33, 48, and 56. The  $EC_{e,threshold}$ , and slope b from these sources are listed in Table A4.

TABLE A4. Salt tolerance of common crops expressed as the electrical conductivity of the soil saturation extract at the threshold when crop yield first reduces below the full yield potential ( $EC_{e, threshold}$ ) and as the slope (b) of reduction in crop yield with increasing salinity beyond  $EC_{e, threshold}$  - Adopted from FAO IDP 56 (Allen et al., 1998)

| Crop <sup>37</sup>                           | EC <sub>e treshold</sub> 38 | <b>b</b> <sup>40</sup> | Rating <sup>41</sup> |  |  |
|----------------------------------------------|-----------------------------|------------------------|----------------------|--|--|
|                                              | (dS m⁻¹) <sup>39</sup>      | (%/dS m⁻¹)             |                      |  |  |
| a. Small vegetables                          |                             |                        |                      |  |  |
| Broccoli                                     | 2.8                         | 9.2                    | MS                   |  |  |
| Brussels sprouts                             | 1.8                         | 9.7                    | MS                   |  |  |
| Cabbage                                      | 1.0-1.8                     | 9.8-14.0               | MS                   |  |  |
| Carrots                                      | 1                           | 14                     | S                    |  |  |
| Cauliflower                                  | 1.8                         | 6.2                    | MS                   |  |  |
| Celery                                       | 1.8-2.5                     | 6.2-13.0               | MS                   |  |  |
| Lettuce                                      | 1.3-1.7                     | 12                     | MS                   |  |  |
| Onions                                       | 1.2                         | 16                     | S                    |  |  |
| Spinach                                      | 2.0-3.2                     | 7.7-16.0               | MS                   |  |  |
| Radishes                                     | 1.2-2.0                     | 7.6-13.0               | MS                   |  |  |
| b. Vegetables - Solanum Family (Solanaceae)  |                             |                        |                      |  |  |
| Egg Plant                                    | -                           | -                      | MS                   |  |  |
| Peppers                                      | 1.5-1.7                     | 12.0-14.0              | MS                   |  |  |
| Tomato                                       | 0.9-2.5                     | 9                      | MS                   |  |  |
| c. Vegetables Cucumber Family (Cucurbitaceae | ?)                          |                        |                      |  |  |
| Cucumber                                     | 1.1-2.5                     | 7.0-13.0               | MS                   |  |  |
| Melons                                       |                             | -                      | MS                   |  |  |
| Pumpkin, winter squash                       | 1:02                        | 13                     | MS                   |  |  |
| Squash, Zucchini                             | 4.7                         | 10                     | MT                   |  |  |
| Squash (scallop)                             | 3.2                         | 16                     | MS                   |  |  |
| Watermelon                                   | -                           | -                      | MS                   |  |  |
| d. Roots and Tubers                          |                             |                        |                      |  |  |
| Beets, red                                   | 4                           | 9                      | MT                   |  |  |
| Parsnip                                      | -                           | -                      | S                    |  |  |
| Potato                                       | 1.7                         | 12                     | MS                   |  |  |
| Sweet potato                                 | 1.5-2.5                     | 10                     | MS                   |  |  |
| Turnip                                       | 0.9                         | 9                      | MS                   |  |  |
| Sugar beet                                   | 7                           | 5.9                    | Т                    |  |  |

<sup>&</sup>lt;sup>37</sup> The data serve only as a guideline - Tolerance varies depending upon climate, soil conditions and cultural practices. Crops are often less tolerant during germination and seedling stage.

<sup>&</sup>lt;sup>38</sup> EC<sub>e, threshold</sub> means average root zone salinity at which yield starts to decline.

<sup>&</sup>lt;sup>39</sup> Root zone salinity is measured by electrical conductivity of the saturation extract of the soil, reported in deciSiemens per metre (dS m-1) at 25 °C

<sup>&</sup>lt;sup>40</sup> 4 b is the percentage reduction in crop yield per 1 dS/m increase in ECe beyond ECe threshold

<sup>&</sup>lt;sup>41</sup> Ratings are: T = Tolerant, MT = Moderately Tolerant, MS = Moderately Sensitive and S = Sensitive

TABLE A4. Continued.

| Crop <sup>36</sup>                               | EC <sub>e treshold</sub> <sup>37</sup> | B <sup>39</sup> | Rating <sup>40</sup> |
|--------------------------------------------------|----------------------------------------|-----------------|----------------------|
|                                                  | (dS m⁻¹) <sup>38</sup>                 | (%/dS m⁻¹)      |                      |
| e. Legumes (Leguminosae)                         |                                        |                 |                      |
| Beans                                            | 1                                      | 19              | S                    |
| Broadbean (faba bean)                            | 1.5-1.6                                | 9.6             | MS                   |
| Cowpea                                           | 4.9                                    | 12              | MT                   |
| Groundnut (Peanut)                               | 3.2                                    | 29              | MS                   |
| Peas                                             | 1.5                                    | 14              | S                    |
| Soybeans                                         | 5                                      | 20              | MT                   |
| f. Perennial Vegetables (with winter dormancy ar | nd initially bare or mulc              | hed soil)       |                      |
| Artichokes                                       | -                                      | -               | MT                   |
| Asparagus                                        | 4.1                                    | 2               | Т                    |
| Mint                                             | -                                      | -               | -                    |
| Strawberries                                     | 1.0-1.5                                | 11.0-33.0       | S                    |
| g. Fibre crops                                   |                                        |                 |                      |
| Cotton                                           | 7.7                                    | 5.2             | Т                    |
| Flax                                             | 1.7                                    | 12              | MS                   |
| h. Oil crops                                     |                                        |                 |                      |
| Casterbean                                       | -                                      | -               | MS                   |
| Safflower                                        | -                                      | -               | MT                   |
| Sunflower                                        | -                                      | -               | MS                   |
| i. Cereals                                       |                                        |                 |                      |
| Barley                                           | 8                                      | 5               | Т                    |
| Oats                                             | -                                      | -               | MT                   |
| Maize                                            | 1.7                                    | 12              | MS                   |
| Maize, sweet (sweet corn)                        | 1.7                                    | 12              | MS                   |
| Millet                                           | -                                      | -               | MS                   |
| Sorghum                                          | 6.8                                    | 16              | MT                   |
| Rice <sup>42</sup>                               | 3                                      | 12              | S                    |
| Wheat (Triticum aestivum)                        | 6                                      | 7.1             | MT                   |
| Wheat, semidwarf (T. aestivum)                   | 8.6                                    | 3               | Т                    |
| Wheat, durum (Triticum turgidum)                 | 5.7-5.9                                | 3.8-5.5         | Т                    |
| j. Forages                                       |                                        |                 |                      |
| Alfalfa                                          | 2                                      | 7.3             | MS                   |
| Barley (forage)                                  | 6                                      | 7.1             | MT                   |
| Bermuda                                          | 6.9                                    | 6.4             | Т                    |
| Clover, Berseem                                  | 1.5                                    | 5.7             | MS                   |
| Clover (alsike, ladino, red, strawberry)         | 1.5                                    | 12              | MS                   |
| Cowpea (forage)                                  | 2.5                                    | 11              | MS                   |

<sup>&</sup>lt;sup>42</sup> Because paddy rice is grown under flooded conditions, values refer to the electrical conductivity of the soil water while the plants are submerged

#### TABLE A4. Continued.

| Crop <sup>36</sup>            | EC <sub>e treshold</sub> <sup>37</sup> | <b>B</b> <sup>39</sup>  | Rating <sup>40</sup> |
|-------------------------------|----------------------------------------|-------------------------|----------------------|
|                               | (dS m <sup>-1</sup> ) <sup>38</sup>    | (%/dS m <sup>-1</sup> ) |                      |
| Fescue                        | 3.9                                    | 5.3-6.2                 | MT                   |
| Foxtail                       | 1.5                                    | 9.6                     | MS                   |
| Hardinggrass                  | 4.6                                    | 7.6                     | MT                   |
| Lovegrass                     | 2                                      | 8.4                     | MS                   |
| Maize (forage)                | 1.8                                    | 7.4                     | MS                   |
| Orchardgrass                  | 1.5                                    | 6.2                     | MS                   |
| Rye-grass (perennial)         | 5.6                                    | 7.6                     | MT                   |
| Sesbania                      | 2.3                                    | 7                       | MS                   |
| Sphaerophysa                  | 2.2                                    | 7                       | MS                   |
| Sudangrass                    | 2.8                                    | 4.3                     | MT                   |
| Trefoil, narrowleaf birdsfoot | 5                                      | 10                      | MT                   |
| Trefoil, big                  | 2.3                                    | 19                      | MS                   |
| Vetch, common                 | 3                                      | 11                      | MS                   |
| Wheatgrass, tall              | 7.5                                    | 4.2                     | Т                    |
| Wheatgrass, fairway crested   | 7.5                                    | 6.9                     | Т                    |
| Wheatgrass, standard crested  | 3.5                                    | 4                       | MT                   |
| Wildrye, beardless            | 2.7                                    | 6                       | MT                   |
| k. Sugar cane                 | 1.7                                    | 5.9                     | MS                   |
| I. Tropical Fruits and Trees  |                                        |                         |                      |
| Banana                        | -                                      | -                       | MS                   |
| Coffee                        | -                                      | -                       | -                    |
| Date Palms                    | 4                                      | 3.6                     | Т                    |
| Palm trees                    | -                                      | -                       | Т                    |
| Pineapple (multi-year crop)   | -                                      | -                       | MT                   |
| Теа                           | -                                      | -                       | -                    |
| m. Grapes and berries         |                                        |                         |                      |
| Blackberry                    | 1.5                                    | 22                      | S                    |
| Boysenberry                   | 1.5                                    | 22                      | S                    |
| Grapes                        | 1.5                                    | 9.6                     | MS                   |
| Hops                          | -                                      | -                       | -                    |
| n. Fruit trees                |                                        |                         |                      |
| Almonds                       | 1.5                                    | 19                      | S                    |
| Avocado                       | -                                      | -                       | S                    |
| Citrus (Grapefruit)           | 1.8                                    | 16                      | S                    |
| Citrus (Orange)               | 1.7                                    | 16                      | S                    |
| Citrus (Lemon)                | -                                      | -                       | S                    |
| Citrus (Lime)                 | -                                      | -                       | S                    |
| Citrus (Pummelo)              | -                                      | -                       | S                    |
| Citrus (Tangerine)            | -                                      | -                       | S                    |
| Conifer trees                 | -                                      | -                       | MS/MT                |
| Deciduous orchard             |                                        |                         |                      |
| - Apples                      | -                                      | -                       | S                    |
| - Peaches                     | 1.7                                    | 21                      | S                    |
| - Cherries                    | -                                      | -                       | S                    |
| - Pear                        | -                                      |                         | S                    |
| - Apricot                     | 1.6                                    | 24                      | S                    |
| - Plum, prune                 | 1.5                                    | 18                      | S                    |
| - Pomegranate                 | -                                      | -                       | MT                   |
| Olives                        | -                                      | -                       | MT                   |

#### ANNEX 5 – Yield response factor (Ky)

 $K_y$  is a factor that describes the reduction in relative yield according to the reduction in ETc caused by soil water shortage.  $K_y$  values are crop-specific and may vary over the growing season. Values for  $K_y$  for individual growth periods and the complete growing season have been included in the FAO Irrigation and Drainage Paper N° 33. Seasonal values for Ky are adopted from FAO 56 IDP and summarized in Table A5.

TABLE A5. Seasonal yield response functions from. Adopted from FAO IDP 33 (Doorenbos and Kassam, 1979)

| Сгор         | Ky       |
|--------------|----------|
| Alfalfa      | 1.1      |
| Banana       | 1.2-1.35 |
| Beans        | 1.15     |
| Cabbage      | 0.95     |
| Citrus       | 1.1-1.3  |
| Cotton       | 0.85     |
| Grape        | 0.85     |
| Groundnut    | 0.7      |
| Maize        | 1.25     |
| Onion        | 1.1      |
| Peas         | 1,15     |
| Pepper       | 1.1      |
| Potato       | 1.1      |
| Safflower    | 0.8      |
| Sorghum      | 0.9      |
| Soybean      | 0.85     |
| Spring Wheat | 1.15     |
| Sugarbeet    | 1        |
| Sugarcane    | 1.2      |
| Sunflower    | 0.95     |
| Tomato       | 1.05     |
| Watermelon   | 1.1      |
| Winter wheat | 1.05     |

#### ANNEX 6 – Saline waters

Classification of saline water is adopted from FAO IDP 24 (Doorenbos and Pruitt, 1977).

TABLE A6. Classification of saline waters. Adopted from FAO IDP 24 (Doorenbos and Pruitt, 1977)

| Water class        | EC (dS/m) | Salt concentration (mg/l) | Type of water                 |
|--------------------|-----------|---------------------------|-------------------------------|
| Non-saline         | <0.7      | <500                      | drinking and irrigation water |
| Slightly saline    | 0.7-2     | 500-1500                  | Irrigation water              |
| Moderately saline  | 2-10      | 1500-7000                 | Primary drainage water and    |
|                    |           |                           | groundwater                   |
| Highly saline      | 10-25     | 7000-15000                | Secondary drainage water and  |
|                    |           |                           | groundwater                   |
| Very highly saline | 25-45     | 15000-35000               | Very saline groundwater       |
| Brine              | >45       | >35000                    | Seawater                      |

#### ANNEX 7 – Water quality for irrigation

Guidelines for the evaluation of water quality for irrigation are given in Table A7. They emphasize the long-term influence of water quality on crop production, soil conditions, and farm management and are adopted from FAO IDP 29 Rev. 1. The guidelines are based on certain assumptions that must not be become rigid prerequisites. No soil or cropping problems are experienced when using water with values lower than those shown for 'no restriction on use'. If the restrictions are in the slight to moderate range, gradually increase care in the selection of crop and management alternatives for achieving full yield potential. If water with values shown severe restrictions is used, then the water user should experience soil and cropping problems or reduced yields, and also requires a high level of management skills for acceptable production.

| Detential irrigation               | Unite             |                    | Degree of restriction on w         |         |
|------------------------------------|-------------------|--------------------|------------------------------------|---------|
| Potential imgation                 | Units –           |                    | se                                 |         |
| problem                            |                   | None               | Slight to moderate                 | Severe  |
| Salinity (affects crop wat         | ter availability) |                    |                                    |         |
| Ecw <sup>44</sup>                  | dS/m              | < 0.7              | 0.7 - 3.0                          | > 3.0   |
| or                                 |                   |                    |                                    |         |
| TDS                                | mg/l              | < 450              | 450 - 2000                         | > 2000  |
| Infiltration (affects infilt       | ration rate of w  | ater into the soil | – Evaluate using $EC_w$ and SAR to | gether) |
| $SAR^{45} = 0 - 3$ and $EC_w$      |                   | > 0.7              | 0.7 - 0.2                          | < 0.2   |
| SAR = 3 - 6 and EC <sub>w</sub>    |                   | > 1.2              | 1.2 - 0.3                          | < 0.3   |
| SAR = $6 - 12$ and EC <sub>w</sub> |                   | > 1.9              | 1.9 - 0.5                          | < 0.5   |
| SAR = 12 - 20 and $EC_w$           |                   | > 2.9              | 2.9 - 1.3                          | < 1.3   |
| SAR = 20 - 40 and $EC_w$           |                   | > 5.0              | 5.0 - 2.9                          | < 2.9   |
| Specific ion toxicity (affe        | cts sensitive cr  | ops)               |                                    |         |
| Sodium (Na)                        |                   |                    |                                    |         |
| Surface                            | SAR               | < 3                | 3 - 9                              | > 9     |
| irrigation                         |                   |                    |                                    |         |
| Sprinkler                          | me/l              | < 3                | > 3                                |         |
| irrigation                         |                   |                    |                                    |         |
| Chloride (Cl)                      |                   |                    |                                    |         |
| Surface                            | me/l              | < 4                | 4 - 10                             | > 10    |
| irrigation                         |                   |                    |                                    |         |
| Sprinkler                          | me/l              | < 3                | > 3                                |         |
| irrigation                         |                   |                    |                                    |         |
| Boron (B)                          | mg/l              | < 0.7              | 0.7 - 3.0                          | > 3.0   |
| Trace Elements (see Tab            | ole 21)           |                    |                                    |         |
| Miscellaneous effects (a           | ffects susceptik  | ole crops)         |                                    |         |
| Nitrogen (NO <sub>3</sub> -N)      | mg/l              | < 5                | 5 - 30                             | > 30    |
| Bicarbonate (HCO <sub>3</sub> )    | me/I              | < 1.5              | 1.5 - 8.5                          | > 8.5   |
| рН                                 |                   |                    | Normal range 6.5-8.4               |         |

TABLE A7. Guidelines for interpretations of water quality for irrigation<sup>43</sup> - FAO IDP 29 Rev. 1 (Ayers, R.S. and D.W. Westcot, 1985)

#### ANNEX 8 - Crop salt tolerance and yield potential

Crops respond to salinity differently. Some crops can achieve higher or acceptable yields at much greater soil salinity than others. This is because they can extract more water from saline soil. There is a wide range of salt tolerance within different crops. The relative salt tolerance for many common fields, vegetable, forage, and tree crops are given in Table 8 and are adopted from FAO IDP 29. Table A8 gives changes in relative yields of selected crops depending on irrigation water salinity or soil salinity. The salt tolerance data of Table A8 are used in the calculation of the leaching requirement.

<sup>&</sup>lt;sup>43</sup> Adapted from University of California Committee of Consultants 1974.

<sup>&</sup>lt;sup>44</sup> EC<sub>w</sub> means electrical conductivity of water

<sup>&</sup>lt;sup>45</sup> SAR means sodium adsorption ratio

| Сгор                                                             | 100% 90%               |        | 75%                    |     | 50% |     | 0%                     |     |        |                    |
|------------------------------------------------------------------|------------------------|--------|------------------------|-----|-----|-----|------------------------|-----|--------|--------------------|
|                                                                  |                        |        |                        |     |     |     |                        |     | "maxin | num" <sup>47</sup> |
|                                                                  | <b>EC</b> <sub>e</sub> | ECw    | <b>EC</b> <sub>e</sub> | ECw | ECe | ECw | <b>EC</b> <sub>e</sub> | ECw | ECe    | ECw                |
|                                                                  | FIELD CROPS            |        |                        |     |     |     |                        |     |        |                    |
| Barley (Hordeum vulgare) <sup>48</sup>                           | 8                      | 5.3    | 10                     | 6.7 | 13  | 8.7 | 18                     | 12  | 28     | 19                 |
| Cotton (Gossypium hirsutum)                                      | 7.7                    | 5.1    | 9.6                    | 6.4 | 13  | 8.4 | 17                     | 12  | 27     | 18                 |
| Sugarbeet (Beta vulgaris) <sup>49</sup>                          | 7                      | 4.7    | 8.7                    | 5.8 | 11  | 7.5 | 15                     | 10  | 24     | 16                 |
| Sorghum (Sorghum bicolor)                                        | 6.8                    | 4.5    | 7.4                    | 5   | 8.4 | 5.6 | 9.9                    | 6.7 | 13     | 8.7                |
| Wheat ( <i>Triticum aestivum</i> ) <sup>47</sup> , <sup>50</sup> | 6                      | 4      | 7.4                    | 4.9 | 9.5 | 6.3 | 13                     | 8.7 | 20     | 13                 |
| Wheat, durum (Triticum turgidum)                                 | 5.7                    | 3.8    | 7.6                    | 5   | 10  | 6.9 | 15                     | 10  | 24     | 16                 |
| Soybean (Glycine max)                                            | 5                      | 3.3    | 5.5                    | 3.7 | 6.3 | 4.2 | 7.5                    | 5   | 10     | 6.7                |
| Cowpea (Vigna unguiculata)                                       | 4.9                    | 3.3    | 5.7                    | 3.8 | 7   | 4.7 | 9.1                    | 6   | 13     | 8.8                |
| Groundnut (Peanut) (Arachis hypogaea)                            | 3.2                    | 2.1    | 3.5                    | 2.4 | 4.1 | 2.7 | 4.9                    | 3.3 | 6.6    | 4.4                |
| Rice (paddy) (Oriza sativa)                                      | 3                      | 2      | 3.8                    | 2.6 | 5.1 | 3.4 | 7.2                    | 4.8 | 11     | 7.6                |
| Sugarcane (Saccharum officinarum)                                | 1.7                    | 1.1    | 3.4                    | 2.3 | 5.9 | 4   | 10                     | 6.8 | 19     | 12                 |
| Corn (maize) <i>(Zea mays)</i>                                   | 1.7                    | 1.1    | 2.5                    | 1.7 | 3.8 | 2.5 | 5.9                    | 3.9 | 10     | 6.7                |
| Flax (Linum usitatissimum)                                       | 1.7                    | 1.1    | 2.5                    | 1.7 | 3.8 | 2.5 | 5.9                    | 3.9 | 10     | 6.7                |
| Broadbean (Vicia faba)                                           | 1.5                    | 1.1    | 2.6                    | 1.8 | 4.2 | 2   | 6.8                    | 4.5 | 12     | 8                  |
| Bean (Phaseolus vulgaris)                                        | 1                      | 0.7    | 1.5                    | 1   | 2.3 | 1.5 | 3.6                    | 2.4 | 6.3    | 4.2                |
|                                                                  | V                      | EGETAE | BLE CRO                | OPS |     |     |                        |     |        |                    |
| Squash, zucchini (courgette) (Cucurbita                          | 4.7                    | 3.1    | 5.8                    | 3.8 | 7.4 | 4.9 | 10                     | 6.7 | 15     | 10                 |
| pepo melopepo)                                                   |                        |        |                        |     |     |     |                        |     |        |                    |
| Beet, red (Beta vulgaris) <sup>48</sup>                          | 4                      | 2.7    | 5.1                    | 3.4 | 6.8 | 4.5 | 9.6                    | 6.4 | 15     | 10                 |
| Squash, scallop (Cucurbita pepo                                  | 3.2                    | 2.1    | 3.8                    | 2.6 | 4.8 | 3.2 | 6.3                    | 4.2 | 9.4    | 6.3                |
| melopepo)                                                        |                        |        |                        |     |     |     |                        |     |        |                    |
| Broccoli (Brassica oleracea botrytis)                            | 2.8                    | 1.9    | 3.9                    | 2.6 | 5.5 | 3.7 | 8.2                    | 5.5 | 14     | 9.1                |
| Tomato (Lycopersicon esculentum)                                 | 2.5                    | 1.7    | 3.5                    | 2.3 | 5   | 3.4 | 7.6                    | 5   | 13     | 8.4                |
| Cucumber (Cucumis sativus)                                       | 2.5                    | 1.7    | 3.3                    | 2.2 | 4.4 | 2.9 | 6.3                    | 4.2 | 10     | 6.8                |
| Spinach (Spinacia oleracea)                                      | 2                      | 1.3    | 3.3                    | 2.2 | 5.3 | 3.5 | 8.6                    | 5.7 | 15     | 10                 |
| Celery (Apium graveolens)                                        | 1.8                    | 1.2    | 3.4                    | 2.3 | 5.8 | 3.9 | 9.9                    | 6.6 | 18     | 12                 |
| Cabbage (Brassica oleracea capitata)                             | 1.8                    | 1.2    | 2.8                    | 1.9 | 4.4 | 2.9 | 7                      | 4.6 | 12     | 8.1                |
| Potato (Solanum tuberosum)                                       | 1.7                    | 1.1    | 2.5                    | 1.7 | 3.8 | 2.5 | 5.9                    | 3.9 | 10     | 6.7                |
| Corn, sweet (maize) (Zea mays)                                   | 1.7                    | 1.1    | 2.5                    | 1.7 | 3.8 | 2.5 | 5.9                    | 3.9 | 10     | 6.7                |
| Sweet potato (Ipomoea batatas)                                   | 1.5                    | 1      | 2.4                    | 1.6 | 3.8 | 2.5 | 6                      | 4   | 11     | 7.1                |
| Pepper (Capsicum annuum)                                         | 1.5                    | 1      | 2.2                    | 1.5 | 3.3 | 2.2 | 5.1                    | 3.4 | 8.6    | 5.8                |
| Lettuce (Lactuca sativa)                                         | 1.3                    | 0.9    | 2.1                    | 1.4 | 3.2 | 2.1 | 5.1                    | 3.4 | 9      | 6                  |
| Radish (Raphanus sativus)                                        | 1.2                    | 0.8    | 2                      | 1.3 | 3.1 | 2.1 | 5                      | 3.4 | 8.9    | 5.9                |
| Onion (Allium cepa)                                              | 1.2                    | 0.8    | 1.8                    | 1.2 | 2.8 | 1.8 | 4.3                    | 2.9 | 7.4    | 5                  |
| Carrot (Daucus carota)                                           | 1                      | 0.7    | 1.7                    | 1.1 | 2.8 | 1.9 | 4.6                    | 3   | 8.1    | 5.4                |
| Bean (Phaseolus vulgaris)                                        | 1                      | 0.7    | 1.5                    | 1   | 2.3 | 1.5 | 3.6                    | 2.4 | 6.3    | 4.2                |
| Turnip (Brassica rapa)                                           | 0.9                    | 0.6    | 2                      | 1.3 | 3.7 | 2.5 | 6.5                    | 4.3 | 12     | 8                  |
| Wheatgrass, tall (Agropyron elongatum)                           | 7.5                    | 5      | 9.9                    | 6.6 | 13  | 9   | 19                     | 13  | 31     | 21                 |
| Wheatgrass, fairway crested (Agropyron                           | 7.5                    | 5      | 9                      | 6   | 11  | 7.4 | 15                     | 9.8 | 22     | 15                 |
| cristatum)                                                       |                        |        |                        |     |     |     |                        |     |        |                    |

| TABLE A8. Crop tolerance and yield potential of selected crops as influenced by irrigation water salinity (ECw) or sol |
|------------------------------------------------------------------------------------------------------------------------|
| salinity (EC <sub>e</sub> ) - FAO IDP 29 Rev. <sup>46</sup> (Ayers, R.S. and D.W. Westcot, 1985)                       |

 $<sup>^{46}</sup>$  Adapted from Maas and Hoffman (1977) and Maas (1984). These data should only serve as a guide to relative tolerances among crops. Absolute tolerances vary depending upon climate, soil conditions and cultural practices. In gypsiferous soils, plants will tolerate about 2 dS/m higher soil salinity (EC<sub>e</sub>) than indicated but the water salinity (EC<sub>w</sub>) will remain the same as shown in this table.

<sup>&</sup>lt;sup>47</sup> The zero yield potential or maximum EC<sub>e</sub> indicates the theoretical soil salinity (EC<sub>e</sub>) at which crop growth ceases.

<sup>&</sup>lt;sup>48</sup> Barley and wheat are less tolerant during germination and seeding stage; EC<sub>e</sub> should not exceed 4–5 dS/m in the upper soil during this period. <sup>49</sup> Beets are more sensitive during germination; EC<sub>e</sub> should not exceed 3 dS/m in the seeding area for garden beets and sugar beets.

<sup>&</sup>lt;sup>50</sup> Semi-dwarf, short cultivars may be less tolerant.

#### TABLE A8. Continued.

| Сгор                                            | 10  | 0%     | 9(                     | )%                         | 75                     | 5%  | 5(                     | )%  | 0      | %                 |
|-------------------------------------------------|-----|--------|------------------------|----------------------------|------------------------|-----|------------------------|-----|--------|-------------------|
|                                                 |     |        |                        |                            |                        |     |                        |     | "maxir | num" <sup>3</sup> |
|                                                 | ECe | ECw    | <b>EC</b> <sub>e</sub> | ECw                        | <b>EC</b> <sub>e</sub> | ECw | <b>EC</b> <sub>e</sub> | ECw | ECe    | ECw               |
|                                                 | V   | EGETA  | BLE CR                 | OPS                        |                        |     |                        |     |        |                   |
| Bermuda grass (Cynodon dactylon) <sup>51</sup>  | 6.9 | 4.6    | 8.5                    | 5.6                        | 11                     | 7.2 | 15                     | 9.8 | 23     | 15                |
| Barley (forage) (Hordeum vulgare) <sup>47</sup> | 6   | 4      | 7.4                    | 4.9                        | 9.5                    | 6.4 | 13                     | 8.7 | 20     | 13                |
| Ryegrass, perennial (Lolium perenne)            | 5.6 | 3.7    | 6.9                    | 4.6                        | 8.9                    | 5.9 | 12                     | 8.1 | 19     | 13                |
| Harding grass (Phalaris tuberosa)               | 4.6 | 3.1    | 5.9                    | 3.9                        | 7.9                    | 5.3 | 11                     | 7.4 | 18     | 12                |
| Fescue, tall (Festuca elatior)                  | 3.9 | 2.6    | 5.5                    | 3.6                        | 7.8                    | 5.2 | 12                     | 7.8 | 20     | 13                |
| Wheatgrass, standard                            | 3.5 | 2.3    | 6                      | 4                          | 9.8                    | 6.5 | 16                     | 11  | 28     | 19                |
| crested (Agropyron sibiricum)                   |     |        |                        |                            |                        |     |                        |     |        |                   |
| Vetch, common (Vicia angustifolia)              | 3   | 2      | 3.9                    | 2.6                        | 5.3                    | 3.5 | 7.6                    | 5   | 12     | 8.1               |
| Sudan grass (Sorghum sudanense)                 | 2.8 | 1.9    | 5.1                    | 3.4                        | 8.6                    | 5.7 | 14                     | 9.6 | 26     | 17                |
| Cowpea (forage) (Vigna unguiculata)             | 2.5 | 1.7    | 3.4                    | 2.3                        | 4.8                    | 3.2 | 7.1                    | 4.8 | 12     | 7.8               |
| Trefoil, big (Lotus uliginosus)                 | 2.3 | 1.5    | 2.8                    | 1.9                        | 3.6                    | 2.4 | 4.9                    | 3.3 | 7.6    | 5                 |
| Sphaerophysa (Sphaerophysa salsula)             | 2.2 | 1.5    | 3.6                    | 2.4                        | 5.8                    | 3.8 | 9.3                    | 6.2 | 16     | 11                |
| Alfalfa (Medicago sativa)                       | 2   | 1.3    | 3.4                    | 2.2                        | 5.4                    | 3.6 | 8.8                    | 5.9 | 16     | 10                |
| Corn (forage) (maize) (Zea mays)                | 1.8 | 1.2    | 3.2                    | 2.1                        | 5.2                    | 3.5 | 8.6                    | 5.7 | 15     | 10                |
| Clover, berseem (Trifolium                      | 1.5 | 1      | 3.2                    | 2.2                        | 5.9                    | 3.9 | 10                     | 6.8 | 19     | 13                |
| alexandrinum)                                   |     |        |                        |                            |                        |     |                        |     |        |                   |
| Orchard grass (Dactylis glomerata)              | 1.5 | 1      | 3.1                    | 2.1                        | 5.5                    | 3.7 | 9.6                    | 6.4 | 18     | 12                |
| Foxtail, meadow (Alopecurus pratensis)          | 1.5 | 1      | 2.5                    | 1.7                        | 4.1                    | 2.7 | 6.7                    | 4.5 | 12     | 7.9               |
| Clover, red (Trifolium pratense)                | 1.5 | 1      | 2.3                    | 1.6                        | 3.6                    | 2.4 | 5.7                    | 3.8 | 9.8    | 6.6               |
| Clover, ladino (Trifolium repens)               | 1.5 | 1      | 2.3                    | 1.6                        | 3.6                    | 2.4 | 5.7                    | 3.8 | 9.8    | 6.6               |
| Clover, strawberry (Trifolium                   | 1.5 | 1      | 2.3                    | 1.6                        | 3.6                    | 2.4 | 5.7                    | 3.8 | 9.8    | 6.6               |
| tragiterum)                                     |     |        |                        | <b>a a a</b> <sup>10</sup> |                        |     |                        |     |        |                   |
|                                                 | TAB | LE A8. |                        | ROPS                       |                        |     | 10                     | 4.0 |        |                   |
| Date palm (phoenix dactylifera)                 | 4   | 2.7    | 6.8                    | 4.5                        | 11                     | 7.3 | 18                     | 12  | 32     | 21                |
| Grapefruit (Citrus paradisi) <sup>32</sup>      | 1.8 | 1.2    | 2.4                    | 1.6                        | 3.4                    | 2.2 | 4.9                    | 3.3 | 8      | 5.4               |
| Orange (Citrus sinensis)                        | 1./ | 1.1    | 2.3                    | 1.6                        | 3.3                    | 2.2 | 4.8                    | 3.2 | 8      | 5.3               |
| Peach (Prunus persica)                          | 1.7 | 1.1    | 2.2                    | 1.5                        | 2.9                    | 1.9 | 4.1                    | 2.7 | 6.5    | 4.3               |
| Apricot (Prunus armeniaca) <sup>31</sup>        | 1.6 | 1.1    | 2                      | 1.3                        | 2.6                    | 1.8 | 3.7                    | 2.5 | 5.8    | 3.8               |
| Grape (Vitus sp.) <sup>51</sup>                 | 1.5 | 1      | 2.5                    | 1.7                        | 4.1                    | 2.7 | 6.7                    | 4.5 | 12     | 7.9               |
| Almond (Prunus dulcis) <sup>51</sup>            | 1.5 | 1      | 2                      | 1.4                        | 2.8                    | 1.9 | 4.1                    | 2.8 | 6.8    | 4.5               |
| Plum, prune (Prunus domestica) <sup>31</sup>    | 1.5 | 1      | 2.1                    | 1.4                        | 2.9                    | 1.9 | 4.3                    | 2.9 | 7.1    | 4.7               |
| Blackberry (Rubus sp.)                          | 1.5 | 1      | 2                      | 1.3                        | 2.6                    | 1.8 | 3.8                    | 2.5 | 6      | 4                 |
| Boysenberry (Rubus ursinus)                     | 1.5 | 1      | 2                      | 1.3                        | 2.6                    | 1.8 | 3.8                    | 2.5 | 6      | 4                 |
| Strawberry (Fragaria sp.)                       | 1   | 0.7    | 1.3                    | 0.9                        | 1.8                    | 1.2 | 2.5                    | 1.7 | 4      | 2.7               |

<sup>&</sup>lt;sup>51</sup> Tolerance given is an average of several varieties; Suwannee and Coastal Bermuda grass are about 20 percent more tolerant, while Common and Greenfield Bermuda grass are about 20percent less tolerant.

<sup>&</sup>lt;sup>52</sup> Tolerance evaluation is based on tree growth and not on yield.

#### **ANNEX 9 – Relative salt tolerance of agricultural crops**

Relative salt tolerance ratings are listed in Table A9 for a large number of crops, including many of those given in Table 8.

TABLE A9. Relative salt tolerance of agricultural crops<sup>53,54</sup> - FAO IDP 29 Rev. 1 (Ayers, R.S. and D.W. Westcot, 1985).

| TOLERANT <sup>55</sup>            |                             |
|-----------------------------------|-----------------------------|
| Fibre, Seed and Sugar Crops       |                             |
| Barley                            | Hordeum vulgare             |
| Cotton                            | Gossypium hirsutum          |
| Jojoba                            | Simmondsia chinensis        |
| Sugarbeet                         | Beta vulgaris               |
| Grasses and Forage Crops          |                             |
| Alkali grass, Nuttall             | Puccinellia airoides        |
| Alkali sacaton                    | Sporobolus airoides         |
| Bermuda grass                     | Cynodon dactylon            |
| Kallar grass                      | Diplachne fusca             |
| Saltgrass, desert                 | Distichlis stricta          |
| Wheatgrass, fairway crested       | Agropyron cristatum         |
| Wheatgrass, tall                  | Agropyron elongatum         |
| Wildrye, Altai                    | Elymus angustus             |
| Wildrye, Russian                  | Elymus junceus              |
| Vegetable Crops                   |                             |
| Asparagus                         | Asparagus officinalis       |
| Fruit and Nut Crops               |                             |
| Date palm                         | Phoenix dactylifera         |
| MODERATELY TOLERANT <sup>54</sup> |                             |
| Fibre, Seed and Sugar Crops       |                             |
| Cowpea                            | Vigna unguiculata           |
| Oats                              | Avena sativa                |
| Rye                               | Secale cereale              |
| Safflower                         | Carthamus tinctorius        |
| Sorghum                           | Sorghum bicolor             |
| Soybean                           | Glycine max                 |
| Triticale                         | X Triticosecale             |
| Wheat                             | Triticum aestivum           |
| Wheat, Durum                      | Triticum turgidum           |
| Grasses and Forage Crops          |                             |
| Barley (forage)                   | Hordeum vulgare             |
| Brome, mountain                   | Bromus marginatus           |
| Canary grass, reed                | Phalaris arundinacea        |
| Clover, Hubam                     | Melilotus alba              |
| Clover, sweet                     | Melilotus                   |
| Fescue, meadow                    | Festuca pratensis           |
| Fescue, tall                      | Festuca elatior             |
| Harding grass                     | Phalaris tuberosa           |
| Panic grass, blue                 | Panicum antidotale          |
| Rape                              | Brassica napus              |
| Rescue grass                      | Bromus unioloides           |
| Rhodes grass                      | Chloris gayana              |
| Ryegrass, Italian                 | Lolium italicum multiflorum |

<sup>&</sup>lt;sup>53</sup> Data taken from Maas (1984).

<sup>&</sup>lt;sup>54</sup> These data serve only as a guide to the relative tolerance among crops. Absolute tolerances vary with climate, soil conditions and cultural practices.

<sup>&</sup>lt;sup>55</sup> Detailed tolerances can be found in Table 4 and Maas (1984).

| TABLE A9. Continued.               |                                |
|------------------------------------|--------------------------------|
| MODERATELY TOLERANT <sup>54</sup>  |                                |
| Grasses and Forage Crops           |                                |
| Ryegrass, perennial                | Lolium perenne                 |
| Sudan grass                        | Sorahum sudanense              |
| Trefoil, narrowleaf                | Lotus corniculatus             |
| birdsfoot                          | tenuifolium                    |
| Trefoil, broadleaf                 | Lotus corniculatus             |
| birdsfoot                          | arvenis                        |
| Wheat (forage)                     | Triticum aestivum              |
| Wheatgrass, standard crested       | Aaropyron sibiricum            |
| Wheatgrass, intermediate           | Aaropyron intermedium          |
| Wheatgrass, slender                | Aaropyron trachycaulum         |
| Wheatgrass, western                | Aaropyron smithii              |
| Wildrve, beardless                 | Elvmus triticoides             |
| Wildrve. Canadian                  | ,<br>Elvmus canadeneis         |
| Vegetable Crops                    | ,                              |
| Artichoke                          | Helianthus tuberosus           |
| Beet, red                          | Beta vulgaris                  |
| Squash, zucchini                   | Cucurbita pepo melopepo        |
| Fruit and Nut Crops                |                                |
| Fig                                | Ficus carica                   |
| Jujube                             | Ziziphus jujuba                |
| Olive                              | Olea europaea                  |
| Рарауа                             | Carica papaya                  |
| Pineapple                          | Ananas comosus                 |
| Pomegranate                        | Punica granatum                |
| MODERATELY SENSITIVE <sup>54</sup> |                                |
| Fibre, Seed and Sugar Crops        |                                |
| Broadbean                          | Vicia faba                     |
| Castorbean                         | Ricinus communis               |
| Maize                              | Zea mays                       |
| Flax                               | Linum usitatissimum            |
| Millet, foxtail                    | Setaria italica                |
| Groundnut/Peanut                   | Arachis hypogaea               |
| Rice, paddy                        | Oryza sativa                   |
| Sugarcane                          | Saccharum officinarum          |
| Sunflower                          | Helianthus annuus              |
| Grasses and Forage Crops           |                                |
| Alfalfa                            | Medicago sativa                |
| Bentgrass                          | Agrostis stolonifera palustris |
| Bluestem, Angleton                 | Dichanthium aristatum          |
| Brome, smooth                      | Bromus inermis                 |
| Buffelgrass                        | Cenchrus ciliaris              |
| Burnet                             | Poterium sanguisorba           |
| Clover, alsike                     | Trifolium hydridum             |
| Clover, Berseem                    | Trifolium alexandrinum         |
| Clover, ladino                     | Trifolium repens               |
| Clover, red                        | Trifolium pratense             |
| Clover, strawberry                 | Trifolium fragiferum           |
| Clover, white Dutch                | Trifolium repens               |
| Corn (forage) (maize)              | Zea mays                       |
| Cowpea (forage)                    | Vigna unguiculata              |
| TABLE A9. Continued.               |                              |  |  |  |
|------------------------------------|------------------------------|--|--|--|
| MODERATELY SENSITIVE <sup>54</sup> |                              |  |  |  |
| Dallis grass                       | Paspalum dilatatum           |  |  |  |
| Foxtail, meadow                    | Alopecurus pratensis         |  |  |  |
| Grama, blue                        | Bouteloua gracilis           |  |  |  |
| Lovegrass                          | Eragrostis sp.               |  |  |  |
| Milkvetch, Cicer                   | Astragalus cicer             |  |  |  |
| Oatgrass, tall                     | Arrhenatherum Danthonia,     |  |  |  |
| Oats (forage)                      | Avena sativa                 |  |  |  |
| Orchard grass                      | Dactylis glomerata           |  |  |  |
| Rye (forage)                       | Secale cereale               |  |  |  |
| Sesbania                           | Sesbania exaltata            |  |  |  |
| Siratro                            | Macroptilium atropurpureum   |  |  |  |
| Sphaerophysa                       | Sphaerophysa salsula         |  |  |  |
| Timothy                            | Phleum pratense              |  |  |  |
| Trefoil, big                       | Lotus uliginosus             |  |  |  |
| Vetch, common                      | Vicia angustifolia           |  |  |  |
| Vegetable Crops                    |                              |  |  |  |
| Broccoli                           | Brassica oleracea botrytis   |  |  |  |
| Brussels sprouts                   | B. oleracea gemmifera        |  |  |  |
| Cabbage                            | B. oleracea capitata         |  |  |  |
| Cauliflower                        | B. oleracea botrytis         |  |  |  |
| Celery                             | Apium graveolens             |  |  |  |
| Corn, sweet                        | Zea mays                     |  |  |  |
| Cucumber                           | Cucumis sativus              |  |  |  |
| Eggplant                           | Solanum melongena esculentum |  |  |  |
| Kale                               | Brassica oleracea acephala   |  |  |  |
| MODERATELY SENSITIVE <sup>54</sup> |                              |  |  |  |
| Kohlrabi                           | B. oleracea gongylode        |  |  |  |
| Lettuce                            | Latuca sativa                |  |  |  |
| Muskmelon                          | Cucumis melo                 |  |  |  |
| Pepper                             | Capsicum annuum              |  |  |  |
| Potato                             | Solanum tuberosum            |  |  |  |
| Pumpkin                            | Cucurbita peop pepo          |  |  |  |
| Radish                             | Raphanus sativus             |  |  |  |
| Spinach                            | Spinacia oleracea            |  |  |  |
| Squash, scallop                    | Cucurbita pepo melopepo      |  |  |  |
| Sweet potato                       | Ipomoea batatas              |  |  |  |
| Tomato                             | Lycopersicon lycopersicum    |  |  |  |
| Turnip                             | Brassica rapa                |  |  |  |
| Watermelon                         | Citrullus Ianatus            |  |  |  |
| Fruit and Nut Crops                |                              |  |  |  |
| Grape                              | Vitis sp.                    |  |  |  |

| TABLE A9. Continued.        |                        |  |  |
|-----------------------------|------------------------|--|--|
| SENSITIVE <sup>54</sup>     |                        |  |  |
| Fibre, Seed and Sugar Crops |                        |  |  |
| Bean                        | Phaseolus vulgaris     |  |  |
| Guayule                     | Parthenium argentatum  |  |  |
| Sesame                      | Sesamum indicum        |  |  |
| Vegetable Crops             |                        |  |  |
| Bean                        | Phaseolus vulgaris     |  |  |
| Carrot                      | Daucus carota          |  |  |
| Okra                        | Abelmoschus esculentus |  |  |
| Onion                       | Allium cepa            |  |  |
| Parsnip                     | Pastinaca sativa       |  |  |
| Fruit and Nut Crops         |                        |  |  |
| Almond                      | Prunus dulcis          |  |  |
| Apple                       | Malus sylvestris       |  |  |
| Apricot                     | Prunus armeniaca       |  |  |
| Avocado                     | Persea americana       |  |  |
| Blackberry                  | Rubus sp.              |  |  |
| Boysenberry                 | Rubus ursinus          |  |  |
| Cherimoya                   | Annona cherimola       |  |  |
| Cherry, sweet               | Prunus avium           |  |  |
| Cherry, sand                | Prunus besseyi         |  |  |
| Currant                     | Ribes sp.              |  |  |
| Gooseberry                  | Ribes sp.              |  |  |
| Grapefruit                  | Citrus paradisi        |  |  |
| SENSITIVE <sup>54</sup>     |                        |  |  |
| Fruit and Nut Crops         |                        |  |  |
| Lemon                       | Citrus limon           |  |  |
| Lime                        | Citrus aurantiifolia   |  |  |
| Loquat                      | Eriobotrya japonica    |  |  |
| Mango                       | Mangifera indica       |  |  |
| Orange                      | Citrus sinensis        |  |  |
| Passion fruit               | Passiflora edulis      |  |  |
| Peach                       | Prunus persica         |  |  |
| Pear                        | Pyrus communis         |  |  |
| Persimmon                   | Diospyros virginiana   |  |  |
| Plum: Prume                 | Prunus domestica       |  |  |
| Pummelo                     | Citrus maxima          |  |  |
| Raspberry                   | Rubus idaeus           |  |  |
| Rose apple                  | Syzygium jambos        |  |  |
| Sapote, white               | Casimiroa edulis       |  |  |
| Strawberry                  | Fragaria sp.           |  |  |
| Tangerine                   | Citrus reticulata      |  |  |

### **ANNEX 10 – Sodium tolerance**

Sodium toxicity is not as easily diagnosed as chloride toxicity, but clear cases are found as a result of relatively high sodium concentrations in the water (high Na or SAR). Typical toxicity symptoms are leaf burn, scorch, and dead tissue along the outside edges of leaves. An extended period (many days or weeks) is normally required before accumulation reaches toxic concentrations. Sensitive crops include deciduous fruits, nuts, citrus, avocados, and beans, but there are many others. For tree crops, sodium in the leaf tissue over 0.25 to 0.50 percent (dry weight basis) is often associated with sodium toxicity. Many crops do show sodium toxicity. The toxicity guidelines use SAR as the indicator of the potential for a sodium toxicity problem. Table A10 gives the relative sodium tolerance of several representative crops. The data in the table are given not in terms of SAR but of soil exchangeable sodium (ESP). There are three categories of tolerance according to approximate levels of exchangeable sodium percentage (ESP): (a) sensitive – less than 15 ESP; (b) semi-tolerant 15–40 ESP; (c) tolerant more than 40 ESP. Tolerance decreases in each column from top to bottom. Tolerances in most instances were established by first stabilizing soil structure since the soil with an ESP above 30 will usually have a poor physical structure for good crop production. Particular care in the assessment of potential toxicity due to SAR or sodium is needed with high SAR water because apparent toxic effects of sodium may be due to or complicated by poor water infiltration. Only the more sensitive perennial crops have yield losses due to sodium if the physical condition of the soil remains good enough to allow adequate infiltration. Several of the crops listed as more tolerant do show fair growth when soil structure is maintained and, in general, these crops can withstand higher ESP levels if the soil structure and aeration can be maintained, as in coarse-textured soils.

| Sensitive <sup>2</sup>  | Semi-tolerant <sup>2</sup> | Tolerant <sup>2</sup> |
|-------------------------|----------------------------|-----------------------|
| Avocado                 | Carrot                     | Alfalfa               |
| (Persea americana)      | (Daucus carota)            | (Medicago sativa)     |
| Deciduous Fruits        | Clover, Ladino             | Barley                |
| Nuts                    | (Trifolium repens)         | (Hordeum vulgare)     |
| Bean, green             | Dallisgrass                | Beet, garden          |
| (Phaseolus vulgaris)    | (Paspalum dilatatum)       | (Beta vulgaris)       |
| Cotton (at germination) | Fescue, tall               | Beet, sugar           |
| (Gossypium hirsutum)    | (Festuca arundinacea)      | (Beta vulgaris)       |
| Maize                   | Lettuce                    | Bermuda grass         |
| (Zea mays)              | (Lactuca sativa)           | (Cynodon dactylon)    |
| Peas                    | Bajara                     | Cotton                |
| (Pisum sativum)         | (Pennisetum typhoides)     | (Gossypium hirsutum)  |
| Grapefruit              | Sugarcane                  | Paragrass             |
| (Citrus paradisi)       | (Saccharum officinarum)    | (Brachiaria mutica)   |
| Orange                  | Berseem                    | Rhodes grass          |
| (Citrus sinensis)       | (Trifolium alexandrinum)   | (Chloris gayana)      |
| Peach                   | Raya                       | Wheatgrass, crested   |
| (Prunus persica)        | (Brassica juncea)          | (Agropyron cristatum) |
| Tangerine               | Oat                        | Wheatgrass, fairway   |
| (Citrus reticulata)     | (Avena sativa)             | (Agropyron cristatum) |
| Mung                    | Onion                      | Wheatgrass, tall      |
| (Phaseolus aurus)       | (Allium cepa)              | (Agropyron elongatum) |
| Mash                    | Radish                     | Karnal grass          |
| (Phaseolus mungo)       | (Raphanus sativus)         | (Diplachna fusca)     |
| Lentil                  | Rice                       |                       |
| (Lens culinaris)        | (Oryza sativus)            |                       |
| Groundnut (peanut)      | Rye                        |                       |
| (Arachis hypogaea)      | (Secale cereale)           |                       |
| Gram                    | Ryegrass, Italian          |                       |
| (Cicer arietinum)       | (Lolium multiflorum)       |                       |
| Cowpeas                 | Sorghum                    |                       |
| (Vigna sinensis)        | (Sorghum vulgare)          |                       |
|                         | Spinach                    |                       |
|                         | (Spinacia oleracea)        |                       |
|                         | Tomato                     |                       |
|                         | (Lycopersicon esculentum)  |                       |
|                         | Wheat                      |                       |
|                         | (Triticum vulgare)         |                       |

TABLE A10. Relative tolerance of selected crops to exchangeable sodium<sup>56</sup>. Adopted from FAO IDP Rev. 1 (Ayers, R.S. and D.W. Westcot, 1985)

<sup>56</sup> Adapted from data of FAO-Unesco (1973); Pearson (1960); and Abrol (1982).

### **ANNEX 11 – Boron tolerance**

Boron is an essential element for plant growth. It is required in relatively small amounts, but present in amounts appreciably greater, it becomes toxic. For some crops, 0.2 mg/l boron in water is essential, but 1 to 2 mg/l may be toxic. Boron problems originating from the water are probably more frequent than those originating in the soil. Boron toxicity can affect nearly all crops but, like salinity, there is a wide range of tolerance among crops. Boron toxicity symptoms normally appear first on older leaves as a yellowing, spotting, or drying of leaf tissue at the tips and edges. Drying and chlorosis often progress toward the center between the veins (interveinal) as more and more boron accumulate with time. Table A11 is not based on plant symptoms, but upon a significant loss in yield to be expected if the indicated boron value is exceeded.

| Westebt, 1909)       |                             |
|----------------------|-----------------------------|
|                      | Very Sensitive (<0.5 mg/l)  |
| Lemon                | Citrus limon                |
| Blackberry           | Rubus spp.                  |
|                      | Sensitive (0.5 – 0.75 mg/l) |
| Avocado              | Persea americana            |
| Grapefruit           | Citrus X paradisi           |
| Orange               | Citrus sinensis             |
| Apricot              | Prunus armeniaca            |
| Peach                | Prunus persica              |
| Cherry               | Prunus avium                |
| Plum                 | Prunus domestica            |
| Persimmon            | Diospyros kaki              |
| Fig, kadota          | Ficus carica                |
| Grape                | Vitis vinifera              |
| Walnut               | Juglans regia               |
| Pecan                | Carya illinoiensis          |
| Cowpea               | Vigna unguiculata           |
| Onion                | Allium cepa                 |
|                      | Sensitive (0.75 – 1.0 mg/l) |
| Garlic               | Allium sativum              |
| Sweet potato         | Ipomoea batatas             |
| Wheat                | Triticum eastivum           |
| Barley               | Hordeum vulgare             |
| Sunflower            | Helianthus annuus           |
| Bean, mung           | Vigna radiata               |
| Sesame               | Sesamum indicum             |
| Lupine               | Lupinus hartwegii           |
| Strawberry           | Fragaria spp.               |
| Artichoke, Jerusalem | Helianthus tuberosus        |
| Bean, kidney         | Phaseolus vulgaris          |
| Bean, lima           | Phaseolus lunatus           |
| Groundnut/Peanut     | Arachis hypogaea            |

TABLE A11. Relative boron tolerance of agricultural crops<sup>57,58</sup>. Adopted from FAO IDP 29 Rev. 1 (Ayers, R.S. and D.W. Westcot, 1985)

<sup>&</sup>lt;sup>57</sup> Data taken from Maas (1984).

<sup>&</sup>lt;sup>58</sup> Maximum concentrations tolerated in soil-water or saturation extract without yield or vegetative growth reductions. Boron tolerances vary depending upon climate, soil conditions and crop varieties. Maximum concentrations in the irrigation water are approximately equal to these values or slightly less.

| Moderately Sensitive (1.0 – 2.0 mg/l) |                                    |  |  |
|---------------------------------------|------------------------------------|--|--|
| Pepper, red                           | Capsicum annuum                    |  |  |
| Реа                                   | Pisum sativa                       |  |  |
| Carrot                                | Daucus carota                      |  |  |
| Radish                                | Raphanus sativus                   |  |  |
| Potato                                | Solanum tuberosum                  |  |  |
| Cucumber                              | Cucumis sativus                    |  |  |
| Mod                                   | derately Tolerant (2.0 – 4.0 mg/l) |  |  |
| Lettuce                               | Lactuca sativa                     |  |  |
| Cabbage                               | Brassica oleracea capitata         |  |  |
| Celery                                | Apium graveolens                   |  |  |
| Turnip                                | Brassica rapa                      |  |  |
| Bluegrass, Kentucky                   | Poa pratensis                      |  |  |
| Oats                                  | Avena sativa                       |  |  |
| Maize                                 | Zea mays                           |  |  |
| Artichoke                             | Cynara scolymus                    |  |  |
| Tobacco                               | Nicotiana tabacum                  |  |  |
| Mustard                               | Brassica juncea                    |  |  |
| Clover, sweet                         | Melilotus indica                   |  |  |
| Squash                                | Cucurbita pepo                     |  |  |
| Muskmelon                             | Cucumis melo                       |  |  |
| Tolerant (4.0 – 6.0 mg/l)             |                                    |  |  |
| Sorghum                               | Sorghum bicolor                    |  |  |
| Tomato                                | Lycopersicon lycopersicum          |  |  |
| Alfalfa                               | Medicago sativa                    |  |  |
| Vetch, purple                         | Vicia benghalensis                 |  |  |
| Parsley                               | Petroselinum crispum               |  |  |
| Beet, red                             | Beta vulgaris                      |  |  |
| Sugarbeet                             | Beta vulgaris                      |  |  |
| Very Tolerant (6.0 – 15.0 mg/l)       |                                    |  |  |
| Cotton                                | Gossypium hirsutum                 |  |  |
| Asparagus                             | Asparagus officinalis              |  |  |

# ANNEX 12 - Trace metals in irrigation water

Trace elements and heavy metals are some elements that are normally present in relatively low concentrations, usually less than a few mg/l, in conventional irrigation waters, but attention should be paid to them when using sewage effluents of industrial origin. These elements include Aluminum (Al), Beryllium (Be), Cobalt (Co), Fluoride (F), Iron (Fe), Lithium (Li), Manganese (Mn), Molybdenum (Mo), Selenium (Se), Tin (Sn), Titanium (Ti), Tungsten (W) and Vanadium (V). Heavy metals are capable of creating definite health hazards when taken up by plants. They include Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), and Zinc (Zn). Table A12 presents the recommended maximum concentrations of trace elements in irrigation water.

| Recommended                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------|
| 29 Rev. 1 (Ayers, R.S. and D.W. Westcot, 1985).                                                                         |
| TABLE A12. Recommended maximum concentrations of trace elements in irrigation water <sup>59</sup> . Adopted from FAO ID |

| Element        | Maximum<br>Concentration <sup>60</sup><br>(mg/l) | Remarks                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Al (aluminium) | 5                                                | Can cause non-productivity in acid soils (pH < 5.5), but more alkaline soils at pH > 7.0 will precipitate the ion and eliminate any toxicity.                                                                                                      |
| As (arsenic)   | 0.1                                              | Toxicity to plants varies widely, ranging from 12 mg/l for Sudan grass to less than 0.05 mg/l for rice.                                                                                                                                            |
| Be (beryllium) | 0.1                                              | Toxicity to plants varies widely, ranging from 5 mg/l for kale to 0.5 mg/l for bush beans.                                                                                                                                                         |
| Cd (cadmium)   | 0.01                                             | Toxic to beans, beets, and turnips at concentrations as low as 0.1 mg/l in nutrient solutions. Conservative limits are recommended due to its potential for accumulation in plants and soils to concentrations that may be harmful to humans.      |
| Co (cobalt)    | 0.05                                             | Toxic to tomato plants at 0.1 mg/l in the nutrient solution.<br>Tends to be inactivated by neutral and alkaline soils.                                                                                                                             |
| Cr (chromium)  | 0.1                                              | Not generally recognized as an essential growth element.<br>Conservative limits are recommended due to a lack of<br>knowledge of its toxicity to plants.                                                                                           |
| Cu (copper)    | 0.2                                              | Toxic to a number of plants at 0.1 to 1.0 mg/l in nutrient solutions.                                                                                                                                                                              |
| F (fluoride)   | 1                                                | Inactivated by neutral and alkaline soils.                                                                                                                                                                                                         |
| Fe (iron)      | 5                                                | Not toxic to plants in aerated soils, but can contribute to soil<br>acidification and loss of availability of essential phosphorus and<br>molybdenum. Overhead sprinkling may result in unsightly<br>deposits on plants, equipment, and buildings. |
| Li (lithium)   | 2.5                                              | Tolerated by most crops up to 5 mg/l; mobile in soil. Toxic to citrus at low concentrations (<0.075 mg/l). Acts similarly to boron.                                                                                                                |
| Mn (manganese) | 0.2                                              | Toxic to some crops at a few-tenths to a few mg/l, but usually only in acid soils.                                                                                                                                                                 |

<sup>&</sup>lt;sup>59</sup> Adapted from National Academy of Sciences (1972) and Pratt (1972).

<sup>&</sup>lt;sup>60</sup> The maximum concentration is based on a water application rate which is consistent with good irrigation practices (10 000 m3 per hectare per year). If the water application rate greatly exceeds this, the maximum concentrations should be adjusted downward accordingly. No adjustment should be made for application rates less than 10 000 m3 per hectare per year. The values given are for water used on a continuous basis at one site.

# TABLE 12. Continued

| Element                       | Recommended<br>Maximum<br>Concentration <sup>59</sup><br>(mg/l) | Remarks                                                                                                                                                                                                                           |
|-------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mn (manganese)                | 0.2                                                             | Toxic to several crops at a few-tenths to a few mg/l, but usually only in acid soils.                                                                                                                                             |
| Mo<br>(molybdenum)            | 0.01                                                            | Not toxic to plants at normal concentrations in soil and water.<br>Can be toxic to livestock if forage is grown in soils with high<br>concentrations of available molybdenum.                                                     |
| Ni (nickel)                   | 0.2                                                             | Toxic to several plants at 0.5 mg/l to 1.0 mg/l; reduced toxicity at neutral or alkaline pH.                                                                                                                                      |
| Pd (lead)                     | 5                                                               | Can inhibit plant cell growth at very high concentrations.                                                                                                                                                                        |
| Se (selenium)                 | 0.02                                                            | Toxic to plants at concentrations as low as 0.025 mg/l and toxic<br>to livestock if forage is grown in soils with relatively high levels<br>of added selenium. An essential element to animals but in very<br>low concentrations. |
| Sn (tin)                      |                                                                 |                                                                                                                                                                                                                                   |
| Ti (titanium)<br>W (tungsten) |                                                                 | Effectively excluded by plants; specific tolerance unknown.                                                                                                                                                                       |
| V (vanadium)                  | 0.1                                                             | Toxic to many plants at relatively low concentrations.                                                                                                                                                                            |
| Zn (zinc)                     | 2                                                               | Toxic to many plants at widely varying concentrations; reduced toxicity at pH > 6.0 and in fine-textured or organic soils.                                                                                                        |

### ANNEX 13 - Water quality for drip irrigation systems

Table A13 presents an interpretation of potential problems that drip irrigation systems could face due to clogging. This information should not be used to provide firm criteria.

The main cause of clogging is solid particles in suspension, but this is also the easiest problem to solve. Filtration is a more reliable way to solve a problem and consists of screening or passage through a suitable medium, normally graded sand. Another cause of clogging is the chemical precipitation of materials such as lime (CaCO3) and phosphates (Ca3(PO4)2). High temperatures or high pH are usually part of the precipitation problem. Precipitation can result from an excess of calcium or magnesium carbonates and sulfates, or from iron which is in the ferrous form but when in contact with oxygen is oxidized to the insoluble ferric form. The most effective method of preventing problems caused by the precipitation of calcium carbonate is to control the pH or to clean the system periodically with an acid to prevent deposits from building up to levels where clogging might occur. A common practice among those with problems is to inject hydrochloric (muriatic) or sulphuric acid into the system periodically. The system may need to be flushed as often as once a week. Iron is more difficult to evaluate for its clogging potential as it is frequently a contributor to other problems, especially those of iron bacterial slime. The limitation given in Table A13 of 5 mg/l should be considered a maximum for drip irrigation systems but, in practical terms, a value above 2.0 may be near maximum since filtration costs become excessive above this limit. A concentration of 0.5 mg/l should be considered a potential problem if tannin-like compounds (often in acid waters) or total sulfides exceed 2 mg/l. The combination of the two normally produces undesirable slime growths. To prevent iron precipitation, it must first be oxidized to the insoluble form, usually by chlorination to a residual of 1 mg/l chlorine. An alternative method is aeration in an open pond or by injection of air into the water supply by mechanical means. This causes oxidized iron to precipitate. Then it can be filtered and removed before the water enters the irrigation line. Both are expensive and difficult processes and the practicality of treatment plus filtering should be evaluated. Many cases of clogging have occurred from biological growths inside the irrigation lines and openings. These are caused by small quantities of micro-organisms such as algae, slimes, fungi, bacteria, snails, and miscellaneous larvae. These problems are difficult to evaluate and prevent since they are affected by several factors. Such problems occur when the water contains organics and iron or hydrogen sulfide. One of the most severe forms of clogging is caused by a white, gelatinous sulfur slime associated with sulfur bacteria. Another one is the brown slime mass caused by filamentous iron bacteria. Algae and other growths can cause problems especially if their growth rates are enhanced by excess nutrient levels (nitrogen or phosphorous). The use of wastewater in localized (drip) irrigation systems would be especially troublesome since effluents normally contain nutrients, dissolved organics, and micro-organisms, all of which may increase the potential for clogging problems.

Chemical treatment (chlorine) is one of the most effective methods for controlling biological growths but is costly and requires close and careful management to use safely.

| Detential Ducklose      | linite               | Degree of Restriction on Use |                    |         |
|-------------------------|----------------------|------------------------------|--------------------|---------|
| Potential Problem       | Units                | None                         | Slight to Moderate | Severe  |
|                         |                      | Physical                     |                    |         |
| Suspended Solids        | mg/l                 | < 50                         | 50 - 100           | > 100   |
| Chemical                |                      |                              |                    |         |
| рН                      |                      | < 7.0                        | 7.0 - 8.0          | > 8.0   |
| Dissolved Solids        | mg/l                 | < 500                        | 500 - 2000         | > 2000  |
| Manganese <sup>62</sup> | mg/l                 | < 0.1                        | 0.1 - 1.5          | > 1.5   |
| Iron <sup>63</sup>      | mg/l                 | < 0.1                        | 0.1 - 1.5          | > 1.5   |
| Hydrogen Sulphide       | mg/l                 | < 0.5                        | 0.5 – 2.0          | > 2.0   |
| Biological              |                      |                              |                    |         |
| Bacterial populations   | maximum<br>number/ml | <10 000                      | 10 000 – 50 000    | >50 000 |

TABLE A13. Influence of water quality on the potential for clogging problems in localized (drip) irrigation systems<sup>61</sup>

<sup>&</sup>lt;sup>61</sup> Adapted from Nakayama (1982).

<sup>&</sup>lt;sup>62</sup> While restrictions in use of localized (drip) irrigation systems may not occur at these manganese concentrations, plant toxicities may occur at lower concentrations.

<sup>&</sup>lt;sup>63</sup> Iron concentrations > 5.0 mg/l may cause nutritional imbalances in certain crops.